

[image:]

ArduCAM Camera Shield Series
SPI Camera Software Application Note
Rev 2.0, Oct 2016

[image:]

Table of Contents
[image:] (
ArduCAM Camera Shield Software Application Note
)

 (
10
) (
www.ArduCAM.com
)
Introduction	3
Software Library Structure	3
Quick Start Guide	3
Example Sketches	5
ArduCAM Mini Examples	5
ArduCAM_Mini_XXX_Plus_VideoStreaming	5
ArduCAM_MINI_XXX_Plus_4CAM_VideoSteaming	5
ArduChip Functions	7
Single Capture Mode	8
Multiple Capture Mode	8
Short Video Capture Mode	8
Single Read Operation	8
Burst Read Operation	8
Rewind Read Operation	9
Low Power Mode	9
Power down the sensor circuit	9
Sensor standby	9
ArduCAM APIs	9
void InitCAM (void)	9
void flush_fifo (void)	10
void start_capture (void)	10
void clear_fifo_flag (void)	10
void write_reg(uint8_t addr, uint8_t data)	10
uint8_t read_reg(uint8_t addr)	10
uint32_t read_fifo_length(void)	10
void set_fifo_burst(void)	10
int wrSensorRegs8_8(const struct sensor_reg*)	10
int wrSensorRegs8_16(const struct sensor_reg*)	10
int wrSensorRegs16_8(const struct sensor_reg*)	10
int wrSensorRegs16_16(const struct sensor_reg*)	10
byte wrSensorReg8_8(int regID, int regDat)	11
byte wrSensorReg8_16(int regID, int regDat)	11
byte wrSensorReg16_8(int regID, int regDat)	11
byte wrSensorReg16_16(int regID, int regDat)	11
byte rdSensorReg8_8(uint8_t regID, uint8_t* regDat)	11
byte rdSensorReg16_8(uint16_t regID, uint8_t* regDat)	11
byte rdSensorReg8_16(uint8_t regID, uint16_t* regDat)	11
byte rdSensorReg16_16(uint16_t regID, uint16_t* regDat)	11
void OV2640_set_JPEG_size(uint8_t size)	12
void OV5642_set_JPEG_size(uint8_t size)	12
void set_format(byte fmt)	12
Registers Table	13

1 [bookmark: _TOC_250068] Introduction
This application note describes the detail software operation of ArduCAM camera shield. The latest source code library and examples can be downloaded from the https://github.com/arducam.

2 [bookmark: _TOC_250067] Software Library Structure
The ARDCAM library is designed for the PICO platform.

[image:]

3 [bookmark: _TOC_250066] Quick Start Guide

	Installing the Toolchain

To build you will need to install some extra tools.
· ARM GCC compiler
· CMake
· Build Tools for Visual Studio 2019
· Python 3.9
· Git

3.1 Installing ARM GCC Compiler
[image:]
During installation you should tick the box to register the path to the ARM compiler as an environment variable in the Windows shell when prompted to do so.

3.2 Installing CMake

WARNING
	There’s a bug in the Release Candidate (rc) versions of CMake 3.20 which means you need to delete your entire
build directory before you can do a subsequent build. CMake 3.19 doesn’t contain this bug and works fine.

During the installation add CMake to the system PATH for all users when prompted by the installer.

3.3 Installing Build Tools for Visual Studio 2019
[image:]
When prompted by the Build Tools for Visual Studio installer you need to install the C++ build tools only.

NOTE

 (
You must install the full "Windows 10 SDK" package as the SDK will need to build the
pioasm
and
elf2uf2
tools locally. Removing it from the list of installed items will mean that you will be unable to build Raspberry Pi Pico binaries.
)

3.4 Installing Python 3.9

During the installation, ensure that it’s installed 'for all users' and add Python 3.9 to the system PATH when prompted by the installer. You should additionally disable the MAX_PATH length limit when prompted at the end of the Python installation.

[image:]

3.6 Installing Git

When installing Git you should ensure that you change the default editor away from vim, see Figure 18.
[image:]

Ensure you tick the checkbox to allow Git to be used from third-party tools and, unless you have a strong reason otherwise, when installing Git you should also check the box "Checkout as is, commit as-is", select "Use Windows' default console window", and "Enable experimental support for pseudo consoles" during the installation process.

3.5.1 Getting the SDK and examples

 (
C:\Users\pico\Downloads> git clone -b master https://github.com/raspberrypi/pico-sdk.git C:\Users\pico\Downloads> cd pico-sdk
C:\Users\pico\Downloads\pico-sdk> git submodule update --init C:\Users\pico\Downloads\pico-sdk> cd ..
C:\Users\pico\Downloads> git clone -b master https://github.com/raspberrypi/pico-examples.git
)

3.5.2 Building "Hello World" from the Command Line

Go ahead and open a Developer Command Prompt Window from the Windows Menu, by selecting Windows > Visual Studio 2019 > Developer Command Prompt from the menu.
Then set the path to the SDK as follows,

 (
C:\Users\pico\Downloads> setx PICO_SDK_PATH "..\..\pico-sdk"
)

You now need close your current Command Prompt Window and open a second Command Prompt Window where this environment variable will now be set correctly before proceeding.
Navigate into the pico-examples folder, and build the 'Hello World' example as follows,
 (
C:\Users\pico\Downloads> cd pico-examples C:\Users\pico\Downloads\pico-examples> mkdir build C:\Users\pico\Downloads\pico-examples> cd build
C:\Users\pico\Downloads\pico-examples\build> cmake -G "NMake Makefiles"

.. C:\Users\pico\Downloads\pico-examples\build> nmake
)

to build the target. This will produce ELF, bin, and uf2 targets, you can find these in the hello_world/serial and hello_world/usb directories inside your build directory. The UF2 binaries can be dragged-and-dropped directly onto a RP2040 board attached to your computer using USB.

3.5.3 Building "Hello World" from Visual Studio Code

Now you’ve installed the toolchain you can install Visual Studio Code and build your projects inside the that environment rather than from the command line.
Go ahead and download and install Visual Studio Code for Windows. After installation open a Developer Command Prompt Window from the Windows Menu, by selecting Windows > Visual Studio 2019 > Developer Command Prompt from the menu. Then type,

[bookmark: OLE_LINK3] (
C:> code
)at the prompt. This will open Visual Studio Code with all the correct environment variables set so that the toolchain is correctly configured.

WARNING
 (
If you start Visual Studio code by clicking on its desktop icon, or directly from the Start Menu then the build environment will
not
be correctly configured. Although this can be done manually later in the CMake Tools Settings, the easiest way to configure the Visual Studio Code environment is just to open it from a Developer Command Prompt Window where these environmental variables are already set.
)

We’ll now need to install the CMake Tools extension. Click on the Extensions icon in the left-hand toolbar (or type Ctrl + Shift + X), and search for "CMake Tools" and click on the entry in the list, and then click on the install button.
Then click on the Cog Wheel at the bottom of the navigation bar on the left-hand side of the interface and select "Settings". Then in the Settings pane click on "Extensions" and the "CMake Tools configuration". Then scroll down to "Cmake: Configure Environment". Click on "Add Item" and add set the PICO_SDK_PATH to be ..\..\pico-sdk as in Figure 19.

Figure 19. Setting
PICO_SDK_PATH
Environment Variable in the CMake Extension

[image:]
Additionally you will need to scroll down to "Cmake: Generator" and enter "NMake Makefiles" into the box.

 IMPORTANT

 (
If you do not change the "Cmake: Generator" Visual Studio will default to
ninja
and the build might fail.
)

Now close the Settings page and go to the File menu and click on "Open Folder" and navigate to pico-examples repo and hit "Okay". You’ll be prompted to configure the project, see Figure 20. Select "GCC for arm-none-eabi" for your compiler.

Figure 20. Prompt to configure your project in Visual Studio Code
[image:]

Open the project and compile the project as follows.
[bookmark: _GoBack]

[image:]

[image:]

[bookmark: _TOC_250065]4 Example Sketches

In the sample folder, there are four host applications, as shown in the figure.
[image:]

Figure 4 Example Folder Structure
[bookmark: _TOC_250063]4.1	ArduCAM_Mini_XXX_Plus_VideoStreaming
[bookmark: _TOC_250061][bookmark: _TOC_250060][bookmark: _TOC_250062]This example illustrates how to send continues capture commands to Pico and transfer the JPEG image data back to host application via Pico onboard USB-Serial interface. Note that the higher resolution wills cause higher image size and reduce the streaming frame rate accordingly. These examples should work with host application to view the captured image
[bookmark: _TOC_250059][bookmark: OLE_LINK1]4.2	ArduCAM_MINI_XXX_Plus_4CAM_VideoStreaming
This example demonstrates how to connect four Arducam-minis (2 or 5 megapixels) to the Arducam Multi-Camera Adapter Board and capture images via USB-Serial.This example should work with the host application.
[bookmark: _TOC_250035]5			 ArduChip Functions
ArduChip is ArduCAM property technology which handles all the timing control over camera interface, LCD interface, frame buffer and SPI interface timings with a set of registers. The ArduChip register address is also called Command Code, user can use low level APIs with these command codes to achieve customized combination of actions that off the shelf APIs don’t have.
Different ArcuCAM platform uses different ArduChip and has different functionalities. Here
	

Hardware Platform
	Functions

	
	Single Capture/
Read
	Burst Read
	Multiple Capture
	Rewind
	Low Power
Mode
	Short Video
Capture

	ArduCAM-Mini-2MP
	√
	√
	
	√
	√
	

	ArduCAM-Mini-5MP-Plus
(OV5642)
	√
	√
	√
	√
	√
	√

is a list of possible hardware platforms:

[bookmark: _TOC_250034]5.1	Single Capture Mode
It is a basic capture function of the ArduChip. The capture command code is 0x84, and write ‘1’ to bit[1] to start a capture sequence. And then polling bit[3] which is the capture done flag by sending command code 0x41. After capture is done, user have to clear the capture done flag by sending command code 0x41 and write ‘1’ into bit[0] before next capture command.
[bookmark: _TOC_250033]5.2	Multiple Capture Mode
By sending the command code 0x81 and with writing the number of images to be capture into bit[2:0], before starting the capture command as the single capture sequence does. Please note that user should trade off between the resolution and number of images to be captured and do not make the frame buffer overflow.
[bookmark: _TOC_250032]5.3	Short Video Capture Mode
Use the same command as the Multiple Capture Mode. When the value bit[2:0] equals to 7, the ArduCAM will continuously capture the images until the entire frame buffer is full. User can save the captured MJPEG to AVI files to create short movie clips.
[bookmark: _TOC_250031]5.4	Single Read Operation
It is basic memory read function which start a single read operation and read a single byte each time. By sending command code 0x3D to start a single read operation, a single byte is read out from the frame buffer.

[bookmark: _TOC_250030]5.5	Burst Read Operation
It is advance capture function which can read multiple bytes out of the frame buffer by just sending a single command code 0x3C.
Please note that for these hardware platforms (ArduCAM-Mini-2MP, ArduCAM-Mini-5MP) the first read byte should be ignored in the first read transaction, because it is a dummy byte. In the following read transaction, the first byte read is the last read byte in the last read transaction, it is very important. And do not use other SPI command between burst read transaction. Detail timing can be found from Figure 5.
[image:]

Figure 6 Burst read timing diagram 2
[bookmark: _TOC_250029]5.6 Rewind Read Operation
Rewind read is useful for some application that need access the same pixel data multiple times. By sending the command code 0x84 and write ‘1’ to bit[5] in the data phase, it will reset the memory read pointer to ZERO. Then user can read the image data from the start of the memory.
[bookmark: _TOC_250028]5.7 Low Power Mode
For some battery powered device power consumption is very important. There are two levels to achieve low power mode, user have to combine these modes according to their own power strategy.
[bookmark: _TOC_250027]5.7.1	Power down the sensor circuit
[bookmark: _TOC_250026]It is achieved by controlling the power enable pin of the onboard LDOs. The power enable pin is controlled by the GPIO[2] of ArduChip. By sending the command code 0x86 and write ‘1’ to bit[2] to enable the LDOs, or write ‘0’ to bit[2] to disable the LDOs to save power. Note that power down the sensor circuit, the camera settings are lost. User should reinitialize the sensor when power up the sensor circuit again.
5.7.2 Sensor standby
It is achieved by controlling the power enable pin of the onboard LDOs. The power enable pin is controlled by the GPIO[1] of ArduChip. By sending the command code 0x86 and write ‘1’ to bit[1] to set the sensor into standby mode, or write ‘0’ to bit[1] to set the sensor out of standby mode. Note that the sensor settings are not lost when in standby mode, and reinitialize is not needed.

[bookmark: _TOC_250025]6	ArduCAM APIs
There are a set of API functions that issue different commands to ArduCAM shield.

[bookmark: _TOC_250024]6.1	void InitCAM (void)
InitCAM function initializes the hardware information of the user system, such as the SPI chip select port initialization and image sensor slave address initialization.
[bookmark: _TOC_250023]6.2	void flush_fifo (void)
flash fifo function is used to reset the fifo read pointer to ZERO.
[bookmark: _TOC_250022]6.3	void start_capture (void)
start_capture function is used to issue a capture command. After this command the ArduCAM hardware will wait for a start of a new frame then store the entire frame data to onboard frame buffer.
[bookmark: _TOC_250021]6.4	void clear_fifo_flag (void)
Once a frame image is buffed to onboard memory, the capture completion flag is asserted automatically. The clear_fifo_flag function is used to clear this flag before issuing next capture command.
[bookmark: _TOC_250020]6.5	void write_reg(uint8_t addr, uint8_t data)
Param1: ArduChip register address (or command code)
Param2: data to be written into the register
ite_reg is a basic function to write the ArduChip internal registers.
[bookmark: _TOC_250019]6.6	uint8_t read_reg(uint8_t addr)
Param1: ArduChip register address (or command code)
Return value: register value
read_reg is a basic function to read ArduChip internal register value.
[bookmark: _TOC_250018]6.7	uint32_t read_fifo_length(void)
Return value: 32 bit length of captured image
read_fifo_length function is used to determine the length of current captured image. Note the Rev.C shield doesn't support this feature.
[bookmark: _TOC_250017]6.8	void set_fifo_burst(void)
set_fifo_burst function is used to set the read memory into burst read mode. It should be called before burst memory read operation.	Note the Rev.C shield doesn't support this feature.
[bookmark: _TOC_250016]6.9	 int wrSensorRegs8_8(const struct sensor_reg*)
Param1: sensor setting data array Return value: error status
wrSensorRegs8_8 function is used to write array of settings into sensor’s internal register over I2C interface and sensor’s register is accessed with 8bit address and 8bit data.
[bookmark: _TOC_250015]6.10	 int wrSensorRegs8_16(const struct sensor_reg*)
Param1: sensor setting data array Return value: error status
wrSensorRegs8_16 function is used to write array of settings into sensor’s internal register over I2C interface and sensor’s register is accessed with 8bit address and 16bit data.
[bookmark: _TOC_250014]6.11	 int wrSensorRegs16_8(const struct sensor_reg*)
Param1: sensor setting data array Return value: error status
wrSensorRegs16_8 function is used to write array of settings into sensor’s internal register over I2C interface and sensor’s register is accessed with 16bit address and 8bit data.
[bookmark: _TOC_250013]6.12	 int wrSensorRegs16_16(const struct sensor_reg*)
Param1: sensor setting data array Return value: error status
wrSensorRegs16_16 function is used to write array of settings into sensor’s internal register
over I2C interface and sensor’s register is accessed with 16bit address and 16bit data.
[bookmark: _TOC_250012]6.13	 byte wrSensorReg8_8(int regID, int regDat)
Param1: sensor internal register address Param2: value to be written into the register Return value: error status
wrSensorReg8_8 function is used to write a single sensor’s internal register over I2C interface and sensor’s register is accessed with 8bit address and 8bit data.
[bookmark: _TOC_250011]6.14	 byte wrSensorReg8_16(int regID, int regDat)
Param1: sensor internal register address Param2: value to be written into the register Return value: error status
wrSensorReg8_16 function is used to write a single sensor’s internal register over I2C interface and sensor’s register is accessed with 8bit address and 16bit data.
[bookmark: _TOC_250010]6.15	 byte wrSensorReg16_8(int regID, int regDat)
Param1: sensor internal register address Param2: value to be written into the register Return value: error status
wrSensorReg16_8 function is used to write a single sensor’s internal register over I2C interface and sensor’s register is accessed with 16bit address and 8bit data.
[bookmark: _TOC_250009]6.16	 byte wrSensorReg16_16(int regID, int regDat)
Param1: sensor internal register address Param2: value to be written into the register Return value: error status
wrSensorReg16_16 function is used to write a single sensor’s internal register over I2C interface and sensor’s register is accessed with 16bit address and 16bit data.
[bookmark: _TOC_250008]6.17	 byte rdSensorReg8_8(uint8_t regID, uint8_t* regDat)
Param1: sensor internal register address Param2: value read from the register Return value: error status
rdSensorReg8_8 function is used to read a single sensor’s internal register value over I2C interface and sensor’s register is accessed with 8bit address and 8bit data.
[bookmark: _TOC_250007]6.18	 byte rdSensorReg16_8(uint16_t regID, uint8_t* regDat)
Param1: sensor internal register address Param2: value read from the register Return value: error status
rdSensorReg16_8 function is used to read a single sensor’s internal register value over I2C interface and sensor’s register is accessed with 16bit address and 8bit data.
[bookmark: _TOC_250006]6.19	 byte rdSensorReg8_16(uint8_t regID, uint16_t* regDat)
Param1: sensor internal register address Param2: value read from the register Return value: error status
rdSensorReg8_16 function is used to read a single sensor’s internal register value over I2C interface and sensor’s register is accessed with 8bit address and 8bit data.
[bookmark: _TOC_250005]6.20	 byte rdSensorReg16_16(uint16_t regID, uint16_t* regDat)
Param1: sensor internal register address Param2: value read from the register Return value: error status
rdSensorReg16_16 function is used to read a single sensor’s internal register value over I2C interface and sensor’s register is accessed with 16bit address and 16bit data.
[bookmark: _TOC_250004]6.21	 void OV2640_set_JPEG_size(uint8_t size)
Param1: resolution code
OV2640_set_JPEG_size function is used to set the desired resolution with JPEG format for OV2640. Current support resolution is shown as follows:
	#define OV2640_160x120
	0
	//160x120

	#define OV2640_176x144
	1
	//176x144

	#define OV2640_320x240
	2
	//320x240

	#define OV2640_352x288
	3
	//352x288

	#define OV2640_640x480
	4
	//640x480

	#define OV2640_800x600
	5
	//800x600

	#define OV2640_1024x768
	6
	//1024x768

	#define OV2640_1280x1024
	7
	//1280x1024

	#define OV2640_1600x1200
	8
	//1600x1200

[bookmark: _TOC_250003]6.22	 void OV5642_set_JPEG_size(uint8_t size)
Param1: resolution code
OV5642_set_JPEG_size function is used to set the desired resolution with JPEG format for OV5642. Current support resolution is shown as follows:
	#define OV5642_320x240
	0
	//320x240

	#define OV5642_640x480
	1
	//640x480

	#define OV5642_1024x768
	2
	//1024x768

	#define OV5642_1280x960
	3
	//1280x960

	#define OV5642_1600x1200
	4
	//1600x1200

	#define OV5642_2048x1536
	5
	//2048x1536

	#define OV5642_2592x1944
	6
	//2592x1944

[bookmark: _TOC_250001]6.23	 void set_format(byte fmt)
set_format function is used to set the sensor between RGB mode and JPEG mode. The
InitCAM function should be called after set_format function.

[bookmark: _TOC_250000]7 Registers Table
Sensor and FIFO timing is controlled with a set of registers which is implemented in the ArduChip. User can send capture commands and read image data with a simple SPI slave interface. The detail description of registers’ bits can be found in the software section in this document. Not all the registers are implemented in a given hardware platform, please check the hardware develop guide for detail register description for certain hardware you've got.
As mentioned earlier the first bit[7] of the command phase is read/write byte, ‘0’ is for read and ‘1’ is for write, and the bit[6:0] is the address to be read or write in the data phase. So user has to combine the 8 bits address according to the read or write commands they want to issue.
Table 1 ArduChip Register Table
	Register Address
bit[6:0]
	Register Type
	Description

	0x00
	RW
	Test Register

	0x01
	RW
	Capture Control Register
Bit[2:0]: Number of frames to be captured
The value in this register + 1 equal to the number of frames to be captured.
The value=7 means capture continuous frames until the frame buffer is full, it is used for short
video clip recording.

	0x02
	RW
	Bus Mode
Determine who is owner of the data bus, only one owner is allowed.
Bit[7:2]: Reserved
Bit[1]: Camera write LCD bus Bit[0]: MCU write LCD bus

	0x03
	RW
	Sensor Interface Timing Register Bit[0]: Sensor Hsync Polarity,
0 = active high, 1 = active low Bit[1]: Sensor Vsync Polarity 0 = active high, 1 = active low Bit[2]: LCD backlight enable 0 = enable, 1 = disable
Bit[3]: Sensor PCLK reverse
0 = normal, 1= reversed PCLK

	0x04
	RW
	FIFO control Register
Bit[0]: write ‘1’ to clear FIFO write done flag Bit[1]: write ‘1’ to start capture
Bit[4]: write ‘1’ to reset FIFO write pointer
Bit[5]: write ‘1’ to reset FIFO read pointer

	0x05
	RW
	GPIO Direction Register
Bit[0]: Sensor reset IO direction

	
	
	Bit[1]: Sensor power down IO direction Bit[2]: Sensor power enable IO direction
0 = input, 1 = output

	0x06
	RW
	GPIO Write Register
Bit[0]: Sensor reset IO value
Bit[1]: Sensor power down IO value Bit[2]: Sensor power enable IO value

	0x3B
	RO
	Reserved

	0x3C
	RO
	Burst FIFO read operation

	0x3D
	RO
	Single FIFO read operation

	0x3E
	WO
	LCD control register with RS=0

	0x3F
	WO
	LCD control register with RS=1

	0x40
	RO
	ArduChip version
Bit[7:4]: integer part of the revision number Bit[3:0]: decimal part of the revision number

	0x41
	RO
	Bit[0]: camera vsync pin status
Bit[3]: camera write FIFO done flag

	0x42
	RO
	Camera write FIFO size[7:0]

	0x43
	RO
	Camera write FIFO size[15:8]

	0x44
	RO
	Camera write FIFO size[22:16]

	0x45
	RO
	GPIO Read Register
Bit[0]: Sensor reset IO value
Bit[1]: Sensor power down IO value Bit[2]: Sensor power enable IO value

image3.png
sroTT =

> .vscode

G ArduCAM.cpp
€ ArduCAMh

M CMakeLists.txt
C 0v2640_regsh
C ov5642_regsh
> build
v Bxamples
> ArduCAM_Mini_2MP_Plus 4CAM VideoStreaming
> Arducam_MINI_2MP_Plus_Videostreaing
> ArduCAM_Mini_SMP_Plus 4CAM VideoStreaming
> Arducam_MINI_SMP_Plus_Videostreaing
gitignore
gitmodules
M CMakelists.txt
f LICENSE
£ pico_sdk_import.cmake

image4.png
9

Recycle Bin

ThiPC > Downlosds

cktop ke 1o
3 Downlosds

@ gec-arm-none-esbi-9-2015-a-major-wi.

B Music

Completing the GNU Tools for Arm
Embedded Processors
9-2019-q4-major 9 2019 Setup

forArm Embedded processors . 2015-q4mar

[——

show Readne
Etaunch gcovarat
[—
Eddrepstry information

Enterprise Evaluation
ense valid for 90 day
180914-1434

© wmimome

image5.png
MSEdge - Win10 (First Boot) [Running]

Installing — Visual Studio Build Tools 2019 — 16.5.3

Workloads Individual components

Desktop & Mobile (4)

Fem) Coe build tools
Build Windows desktop applications using the Microsoft
Coe toolzet, ATL or MFC

Mobile Development with .NET
Tools for building cross-platiorm applications for IOS,
Android and Windews using C and £2.

>4

NET desktop build tools
Tools for building WPF, Windows Forms, and console
applications using C#, Visual Basic, and £2.

Universal Windows Platform build tools
Provides the tools required 1o build Universal Windows.
Platform applications.

Web & Cloud (4)

Location
C\Program Files (xB6)\Microsoft Visual Studio\2019\8uildTools

Language packs

n locations
In:

>

Change..

By continuing, you agree to the licsnz for the Visual Studio edition you selected. We also offer the sbility to download other
Software with Visual Studic. This software is licensed separately, as set out in the 3rd Party. Natices or in s accompanying

license. By continuing, you slso agree 1o those licenses.

O Type here to search

stallation details
MSBuild Tools

C++ build tools

Included

v C++ Build Tools core features

+ C++ 2019 Redistributable Update

Optional
MSVC V142 - VS 2019 C++ x64/x86 build t00ls (.
Windows 10 SDK (10.0.18362.0)
C++ CMake tools for Windows
Testing tools core features - Build Tools
C++ Addresssanitizer (Experimental)
C++ ATL for latest v142 build tools (x6 & x64)
C++ MFC for latest v142 build tools (86 & x64)
C++/CUI support for v142 build tools (14.25)
C++ Modules for v142 build tools (x64/x86 — ex.
C++ Clang tools for Windows (9.0.0 - x64/x86)
Windows 10 SDK (10.0.17763.0)
Windows 10 SDK (10.0.17134.0)
Windows 10 SDK (10.0.16299.0)
MSVC V141 - VS 2017 C++ x64/x86 build t00ls (.

Total space required

o) & = Ul e Lert 3t

a7ace

image6.jpeg
MSEDGEWIN1O
Manage

Share Application Too

> ThisPC > Downloads
64-bi) Setup

Install Python 3.9.2 (64-bit)

o install Python with default settings, or choose

Select Install No
le or disable features.

Customize to en;

@ install No

Users\[EUses

Customize installation

| python
[Install launcher for all users (recommended)

Add Python 3.9 to PATH

windows

item selected 269 M

£

Ol o

image7.png
&5 Thiepc

Quick access

T
> Mu
B Videos

o Network

O Type here to search

) e 0 G) Lre 3¢

image8.jpeg
x) File Edit Selection View Go Run Terminal Help Settings - Visual Studio Code - [a} x
[= setngs X am -

o RS

User
Commonly Used emake
> > Text Editor
Rt Cmake: Configure Args
o ¥ Window Additional arguments o pass to CMake when configuring.
=5} > Features
> Appication | Addtem
 Extensions
(CMake Tools conf.... ., crake: Configure Environment
css Environment variables to pass to CMake during configure.
Emmet
e Htem Value
v 7IC0.50K PATH ipeosdk Lokl
Grunt
Gulp Cmake: Configure On Edit
ML W/ Automatically configure CMake project directories when cmake.sourceDirectory or CMakeLists xt content are saved.
Jake
Javascript Debugger
o Cmake: Configure On Open
a2 Automatically configure CMake project directories when they are opened.
Markdown
Mere cout ‘Cmake: Configure Settings
Node debug (CMake variables to set on the command line.
Npm
® ot Editin settingsjson
Reference Search V...
& SCSS (Sass) Cmake: Copy Compile Commands

image9.jpeg
File Edit Selection View Go Run Terminal Hel Welcome - pico_examples - Visual Studio Code. - o x
P pico_oxampl

BXPLORER %) welcome X m -
> opeN EDITORS

O v oo e

> adc

> audio
3’ > build Start Customize

> dodks New file
é) > flash Open folder. Tools and languages

> hello_world Add workspace folder. Install support for JavaScript, Python, PHP, Azure,
=

o Settings and keybindings

2 me Installthe settings and keyboard shortcuts of Vim,
E > tegay Recent

> picoboard Norecent folders

Color theme
Make the editor and your code look the way you .

P Leam
Printable keyboard cheatsheet
Introductory videos
e i e Find and run all commands
Mot Rapidly access and search commands from the Co.
Github repository
Stack Overflow

£ pico_sdk importcmake Join i Hlewslebter Interface overview

@ READMEMd Get a visual overlay highbghting the major compo...
Show welcome page on startup Interactive playground

® @ Would you fike to configure project ‘pico_examples? @ x

& > ownme Source CMake Tools (xtension) e Notnow
> Tmene

image10.png
 ARDUCAM SP| CAMERA C PLUS PLUS
> .vscode
~ ArduCAM
@ ArduCAM.cpp
C ArduCAMh
M CMakeLists.txt
€ ov2640_regsh
C ov5642_regsh
> build
v Examples
~ ArduCAM_Mini_2MP_Plus 4CAM VideoStreaming
G ArduCAM_Mini_2MP_Plus 4CAM_VideoStreaming.cpp
M CMakeLists.txt
> Arducam_MINI_2MP_Plus Videostreaing
> ArduCAM_Mini_5MP_Plus 4CAM VideoStreaming
> Arducam_MINI_5MP_Plus Videostreaing
gitignore

gitmodules
M CMakelists.txt
f LICENSE
£ pico_sdk_import.cmake

v Am
e] CS1
el Cs2
te1Cs3
e] CS4
@] start_capture

€, |} Arducam_spi_camera_c_plus_plus ¥EETEA

Be ST RG] mxaitm enEEs
25 [RISE] SRIEEGE CMake FENEERNSTEAIRES)

25 GCC for am-none-eabi 10.2.1 /7 iiafmmiiibiestgee-ermm i ET=TONE-2abT-ges xe, CXX = DA
Visual Studio Community 2019 Release - amd64 458/ 16.9.3 (64 (REH3)

Visual Studio Community 2019 Release - amd64 x86 #EiEEAT 16.9.3 (x64 x86 KFEE5H)
Visual Studio Community 2019 Release - x86 #54&iFa2fT 16.9.3 (x86 KF:EH9)

25
25
25
25

25 Visual Studio Community 2019 Release - x86_amd64 4miFaEAT 16.9.3 (x86_x64 1)

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

274}

275

//Start capture

myCAM. start_capture();

while(!myCAM. get_bit(ARDUCHIP_TRIG , CAP_DONE_MASK));

int length = myCAM.read_fifo_length();

uint8_t * imageBuf =(uint8_t *) malloc(length*sizeof(uint8_t));
count = length;

i-0;
myCAM.CS_LOW() ;

myCAM. set_fifo_burst();//Set fifo burst mode
spi_read_blocking(SPT_PORT, BURST_FIFO_READ,imageBuf, length);
uart_write_blocking(UART_ID, imageBuf, length);

count = 0;

myCAM. CS_HIGH() ;

free(imageBuf);

return 1;

BE il SR Eeas

[build
[build]
[build]
[build]
[build]
[build]
[build]
[build]
[build]
[build]

[211/212 96%
[211/212 96%
[211/212 97%
[211/212 97%
[211/212 98%
[211/212 98%
[211/212 99%
[211/212 99%
[212/212 100%
EpEE M, BHAEA o

Streaming.cpp > (@1 CS3

‘CMake/Build v

4.674] Building C object Examples/Arducam_MINI_SMP_Plus_Videostreaing/CMakeFiles/Arducam_MINI_5MP_Plus_Videostreaing.di
: 4.712] Building C object Examples/Arducam_MINI_SMP_Plus_Videostreaing/CMakeFiles/Arducam_MINI_SMP_Plus_Videostreaing.di
4.736] Building C object Examples/Arducam_MINI_SMP_Plus_Videostreaing/CMakeFiles/Arducam
: 4.740] Building C object Examples/Arducam_MINI_SMP_Plus_Videostreaing/CMakeFiles/Arducam_MINI_SMP_Plus_Videostreaing.di
4.745] Building C object Examples/Arducam_MINI_SMP_Plus_Videostreaing/CMakeFiles/Arducam
: 4.748] Building C object Examples/Arducam_MINI_SMP_Plus_Videostreaing/CMakeFiles/Arducam_MINI_SMP_Plus_Videostreaing.di
4.779] Linking CXX executable Examples\ArduCAM_Min
: 4.922] Building CXX object Examples/Arducam_MINI_SMP_Plus_Videostreaing/CMakeFiles/Arducam_MINI_SMP_Plus_Videostreaing.
5.411] Linking CXX executable Examples\Arducam MINI_SMP_Plus_Videostreaing\Arducam MINI_SMP_Plus_Videostreaing.elf

MINI_SMP_Plus_Videostreaing.di

MINI_SMP_Plus_Videostreaing.di

SMP_Plus_ACAM_VideoStreaming\ArduCAM_Mini_SMP_Plus_4CAM VideoStream

image11.png
" ARDUCAM_SPI_CAMERA C PLUS PLUS L & O & Bamples > ArduCAM_Mini_2MP_Plus 4CAM _VideoStreaming > € ArduCAM_Mini_2MP_Plus_ 4CAM _VideoStreaming.cpp > (€] CS3
> vscode 252

~ ArduCAM 253
G ArduCAM.cpp 254 uint8_t read_fifo_burst(ArduCAM myCAM)
C ArducAMh .
Y @ s 256 int i, count;
€ ov2640.regsh 257 //Flush the F?FO
- 258 myCAM. flush_fifo();
C ov5642_regsh 259 //Start capture
> build pL) myCAM. start_capture();
v Bxamples 261 while(!myCAM. get_bit(ARDUCHIP_TRIG , CAP_DONE_MASK));
v ArduCAM_Mini_2MP_Plus_4CAM_VideoStreaming 262 int length = myCAM.read_fifo_length();
€ ArduCAM_Mini_2MP_Plus 4CAM_VideoStreaming.cpp 263 uint8_t * imageBuf =(uint8_t *) malloc(length*sizeof(uint8_t));
B 264 count = length;
M CMakelists.txt o i-0;
> Arducam_MINI_2MP_Plus_Videostreaing o myCAM.CS_LON();
> ArduCAM_Mini_5MP_Plus_4CAM_VideoStreaming 267 myCAM. set_fifo_burst();//Set fifo burst mode
> Arducam_MINI_SMP_Plus_Videostreaing 268 spi_read_blocking(SPT_PORT, BURST_FIFO_READ,imageBuf, length);
gitignore 269 uart_write_blocking(UART_ID, imageBuf, length);
s 270 count = 0;
] @ 271 myCAH. CS_HIGH() ;
272 free(imageBuf);
L e 273 return 1;
pico_sdk_import.cmake 274}
275
AE W S ERSHS CMake/Build v =} ~ X

[build] [211/212 96%
[build] [211/212 96%
[build] [211/212 97%
[build] [211/212 97%
o [build] [211/212 98%
[build] [211/212 98%

4.674] Building C object Examples/Arducam_MINI_5MP_Plus_Videostreaing/CMakeFiles/Arducam MINI_5MP_Plus_Videostreaing.dir
4.712] Building C object Examples/Arducam_MINI_5MP_Plus_Videostreaing/CMakeFiles/Arducam_MINI_5MP_Plus_Videostreaing.dir
4.736] Building C object Examples/Arducam_MINI_5MP_Plus_Videostreaing/CMakeFiles/Arducam_MINI_5MP_Plus_Videostreaing.dir
4.740] Building C object Examples/Arducam_MINI_5MP_Plus_Videostreaing/CMakeFiles/Arducam_MINI_5MP_Plus_Videostreaing.dir
4.745] Building C object Examples/Arducam_MINI_5MP_Plus_Videostreaing/CMakeFiles/Arducam_MINI_5MP_Plus_Videostreaing.dir
4.748] Building C object Examples/Arducam_MINI_5MP_Plus_Videostreaing/CMakeFiles/Arducam_MINI_5MP_Plus_Videostreaing.dir

] CS1

© [build] [211/212 99% :: 4.779] Linking CXX executable Examples\ArduCAM_Mini_SMP_Plus_4CAM_VideoStreaming\ArduCAM Mini_SMP_Plus_4CAM VideoStreami
et [build] [211/212 99% :: 4.922] Building CXX object Examples/Arducam MINI_SMP_Plus_Videostreaing/CMakeFiles/Arducam MINI_SMP_Plus_Videostreaing.d
e [build] [212/212 4711] Linking CXX executable Examples\Arducam_MINI_SMP_Plus_Videostreaing\Arducam MINI_SMP_Plus_Videostreaing.elf

@) CS4 [build] i

@] start_capture

image12.png
|| ArduCAM_Mini 2MP_Plus 4CAM_VideoStreaming
|| Arducam_MINI_2MP Plus Videostreaing
|| ArduCAM_Mini 5MP_Plus 4CAM VideoStreaming
|| Arducam_MINI_SMP_Plus Videostreaing

image13.png
wax ' Il I i m I i

o — D EDEDEDE SEDEE—
30T SEEE—
«1 il r

Figure 5 Burst read timing diagram 1
For hardware platforms (ArduCAM-Shield-V2, ArduCAM-Mini-SMP-Plus), you donit need
10 worry about e first byte. Detail timing can be found from Figure 6.

- | HH |

o — D EDEDTDE TEDEE—
150 XIS SEEE—
Bl 1 r

image1.jpeg

image2.jpeg

