
 MT9D111 Developer Guide
About this Guide

Micron Confidential and Proprietary Advance‡
MT9D111 Developer Guide
1/3.2-Inch, 2-Megapixel SOC CMOS Digital Image Sensor

About this Guide
The MT9D111 is a complete system-on-a-chip solution. It incorporates sophisticated,
on-chip camera functions and is programmable through a simple two-wire serial inter-
face. The developer guide is a thorough reference for engineers who wish to develop
applications for the MT9D111. The guide provides a detailed information on working
with chip registers and variables and explains how to use Micron’s developer software—
DevWare. The MT9D111 data sheet should be used along with this guide as a referenece
for specific register and programing information.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_front.fm - Rev. A 6/05 EN 1 ©2005 Micron Technology, Inc. All rights reserved.

‡Products and specifications discussed herein are for evaluation and reference purposes only and are subject to change by
Micron without notice. Products are only warranted by Micron to meet Micron’s production data sheet specifications.

 MT9D111 Developer Guide
Table of Contents

Micron Confidential and Proprietary Advance
Table of Contents
Two-Wire Serial Interface .9

Overview. .9
Example: 16 Bit Register Read .9
Example: 16 Bit Register Write. .10
Accessing the Firmware Drivers' Variables. .11

Initializing the MT9D111. .13
Power-up Sequence. .13
Hard Reset Sequence. .13
Soft Reset Sequence. .13
Standby Sequence .13
PLL Setup .15
Identifying Chip Version. .15

Initializing FAQs .16
Context Switching and Output Configuration .17

Context Switch and Setup .17
Changing the Output Resolution .17
Selecting Output Data Formats. .17
Raw Bayer Data Output. .18
Output Format and Timing .18
Decimation, Zoom, and Pan .22
Enabling Special Effects .23
Mirroring the Image. .24
Column and Row Skip. .24
Binning .25
Configuring Pad Slew .25
Capturing Still Pictures .25
Capturing Videos .26
Enabling and Capturing JPEG .27
Switching Between JPEG 4:2:2, 4:2:0, and Monochrome. .27

Context Switching and Output Configuration FAQs .28
Gamma and Contrast .30

Gamma .30
Contrast .31

Gamma and Contrast FAQs .32
Lens Shading and Correction .33

Introduction .33
Lens Shading Approach .33
Setup .34
Preset and Load .35
Setup Conditions .35
Calibration .38
Result .41
Verification .42
Related Register List. .43

Lens Shading and Correction FAQs. .45
Auto Exposure .46

Overview. .46
Preview Mode .46
Scene Evaluative Mode .46
AE Sport Mode .46
How to Calibrate the AE Exposure Value (EV) Reference .47
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_GuideTOC.fm - Rev. A 6/05 EN 2 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Table of Contents

Micron Confidential and Proprietary Advance
How to Modify the Image Brightness. .47
How to Speed Up and Slow Down AE Adjustments .47
How to Maintain Specific Frame Rates .48
How to Use Manual Exposure and Manual Gain .48

Auto Exposure FAQs .49
Flicker Avoidance .50

Background .50
How to Use the Flicker Detection Driver .50

Flicker Avoidance FAQs .52
Color Correction .53

Auto White Balance .53
How to Change the Color Saturation .53
How to Speed Up/Slow Down AWB. .54
How to use a Static CCM. .54
How to Perform Color Calibration .55
Related Register List. .65

Color Correction FAQs .66
Auto Focus Driver .67

Background .67
Scan Auto Focus Algorithm .67
Evaluation of Image Sharpness .72
Algorithm Flowchart .76
Creep Compensation. .78
Public Variables of AF Driver .78
Public Functions of AF Driver and Corresponding VMT Pointers. .82
Lens Actuator Control .86
Managing Lens Actuator Hysteresis. .88
Timer. .90
Serial Interface .96
Initial Positioning of Stepper Motors. .97

Auto Focus Driver FAQs. 105
Auto Focus Mechanism . 107

Introduction . 107
Public Functions of the AFM Driver and Corresponding VMT Pointers . 112

Mode Driver-Setting up Preview (A) and Capture (B) Modes . 116
MT9D111 Register Wizard . 116
Procedure. 116

MT9D111 Developer Guide Mode Driver Preview and Driver FAQs . 123
Histogram Driver. 124

How to Set Up the Histogram Driver Variable for Operation . 124
Flash Strobe, Mechanical Shutter, and Global Reset. 125

Still Capture using Xenon/LED Flash with User-defined Image Quality Settings . 125
Still Capture using LED Flash with Automatic White Balance and Exposure Control . 126

Flash Strobe, Mechanical Shutter, and Global Reset FAQs . 128
GPIOs . 129

Programming GPIO Outputs . 129
Reading GPIO Inputs . 129
Outputting Flash and/or Strobe from GPIO. 129
Waveform Generator Programming Example . 129

GPIO FAQs . 131
Using the Test Patterns . 132

Disabling All Firmware Drivers . 132
JPEG Functionality . 133
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_GuideTOC.fm - Rev. A 6/05 EN 3 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Table of Contents

Micron Confidential and Proprietary Advance
How to Enable/Disable the JPEG Output . 133
How to Set the JPEG Color Format . 133
How to Set the Restart Marker Interval . 133
How to Get the JPEG Status . 133
How to Get the JPEG Data Length . 133
How to Handle the JPEG Errors. 134
How to Read/Write the JPEG Quantization/Huffman Table Memories . 134
How to Program the Quantization Table . 134
How to Translate between Qscale and Quality Factor . 136
How to Program the Customized Huffman Table. 137
How to Append the JPEG Header . 138
Sample C Code . 139
JPEG Power Saving . 147

JPEG Functionality FAQs . 148
Appendix A—How to Update Demo2 Firmware . 150
Appendix B—Miscellaneous FAQs . 151
Appendix C—Glossary of Terms . 156
Revision History. 158

Rev A, Advance, Draft 6/05. 158
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_GuideTOC.fm - Rev. A 6/05 EN 4 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
List of Figures

Micron Confidential and Proprietary Advance
List of Figures
Figure 1: Register Legend .8
Figure 2: Firmware Variable Legend .8
Figure 3: Example of 16-Bit Register Read from Chip Version Register (Reg0x00:0), Value=0x151910
Figure 4: Example of 16-Bit Register Write to Register (Reg0x20:1), Value=0xA5F0 .11
Figure 5: PLL Setting Change Flow Chart .16
Figure 6: Timing of Decimated Uncompressed Output Bypassing the FIFO .19
Figure 7: Timing of Uncompressed Full Frame or Decimated Output Passing through the FIFO 19
Figure 8: Example of Timing for Non-Decimated Uncompressed Output Bypassing Output FIFO19
Figure 9: Timing of JPEG Compressed Output in Free-Running Clock Mode .21
Figure 10: Timing of JPEG Compressed Output in Gated Clock Mode .22
Figure 11: Timing of JPEG Compressed Output in Spoof Mode .22
Figure 12: Gamma Correction Curve. .30
Figure 13: Signal .33
Figure 14: Lens Correction Zones. .34
Figure 15: DevWare Toolbar .34
Figure 16: Presets Dialog Box .35
Figure 17: Setting Gamma to 1.0 .36
Figure 18: Enable Auto Exposure .37
Figure 19: Disable AWB and Color Correction .38
Figure 20: Setting the Row and Column Line .39
Figure 21: Sensor Control Dialog Box Showing Lens Correction Settings .40
Figure 22: Settled Analysis Graph .40
Figure 23: Adjusting K Factor .41
Figure 24: Correlation Between Percentage and Curvature .41
Figure 25: Lens Correction Result, Before and After .42
Figure 26: Intensity Graph (horizontal) Before and After .42
Figure 27: Intensity Graph (vertical) Before and After .42
Figure 28: Locating the Lens Correction.ini File .43
Figure 29: Block Diagram of a Basic AF Camera Built Around the MT9D111 Image Sensor 67
Figure 30: Search for Best Focus .68
Figure 31: Scene with Two Potential Focus Targets at Different Distances From Camera71
Figure 32: Dependence of Luminance-Normalized Local Sharpness Scores on Lens Position 71
Figure 33: Example of Position Weight Histogram Created by AF Driver .72
Figure 34: Auto Focus WIndows .74
Figure 35: Computation of Sharpness Scores and Luminance Average for AN AF Window 75
Figure 36: Flowchart of Scan AF Algorithm Implemented in the MT9D111 .76
Figure 37: Flowchart of Scan AF Algorithm Implemented in the MT9D111 .77
Figure 38: Example of Hystereis-affected Relation Between Physical and Logical Lens Position88
Figure 39: Hystereis Loop Typical for Simple Mechanical Gears .90
Figure 40: Time Needed to Increase Voltage on Helimorph by 10V as a Function of Lens Position 94
Figure 41: Piecewise Linear Function Used by AFM Driver to Estimate Lens Travel Time 96
Figure 42: Typical Relation Between Photointerrupter Output SIgnal and Lens Position 98
Figure 43: Lens Movements During Initial Positioning of a Stepper Motor (Example 1) 100
Figure 44: Lens Movements During Initial Positioning of a Stepper Motor (Example 2) 100
Figure 45: Lens Movements During Initial Positioning of a Stepper Motor (Example 3) 101
Figure 46: Flowchart of AFM Driver Function Used in Initial Positioning of Stepper Motors (Page 1) 103
Figure 47: Flowchart of AFM Driver Function Used in Initial Positioning of Stepper Motors (Page 2) 104
Figure 48: Input Clock and PLL Output Frequencies. 117
Figure 49: Image Timing Section . 118
Figure 50: State Parameters Tab . 119
Figure 51: State Diagram and Transitions of the MT9D111 . 120
Figure 52: Gamma and Contrast Tab. 121
Figure 53: Register Output Tab . 122
Figure 54: LED Flash Timing Diagram . 126
Figure 55: Xenon Flash Timing Diagram . 126
Figure 56: LED Flash Timing Diagram with Automatic Exposure and White Balance 127
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_GuideLOF.fm - Rev. A 6/05 EN 5 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
List of Figures

Micron Confidential and Proprietary Advance
Figure 57: Chief Ray Angle Requirement for 2MP MT9D111 . 152
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_GuideLOF.fm - Rev. A 6/05 EN 6 ©2005 Micron Technology, Inc. All rights reserved.

PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_GuideLOT.fm - Rev. A 6/05 EN 7 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
List of Tables

Micron Confidential and Proprietary Advance

List of Tables
Table 1: Selecting Values in the Bus Address (Read/Write) .9
Table 2: Register Page Description .9
Table 3: Reg0x00C6:1[15:0], Indirect Access Address Register .11
Table 4: Reg0x001E:2[15:0], JPEG Indirect Access Control Register .12
Table 5: Frequency Parameters. .15
Table 6: Changing Output Format Variables .17
Table 7: Output Format Option Configuration Settings .18
Table 8: YCrCb Output Data Ordering. .20
Table 9: RGB Ordering in Default Mode .20
Table 10: Enabling Special Effects .24
Table 11: Possible AF Filters. .75
Table 12: Public Variables of the Auto Focus Driver .79
Table 13: Programmable Parameters of Stepper Motor Positioning Function. 102
Table 14: Public Variables of the AFM Driver. 107
Table 15: PLL Specifications . 117
Table 16: Luminance Quantization . 135
Table 17: Chrominance Quantization . 135
Table 18: Quantization Address Map . 135
Table 19: Huffman Memory Map . 137
Table 20: Structure of Huffman Code in Huffman Memory . 137
Table 21: Location of AC Huffman Codes in Huffman Memoy . 138
Table 22: Location of DC Huffman Codes in Huffman Memory . 138
Table 23: Glossary of Terms . 156

 MT9D111 Developer Guide
Introduction to Registers

Micron Confidential and Proprietary Advance
Introduction to Registers
This developer guide refers to various memory locations and registers that the user
reads from or writes to for altering the MT9D111 operation. Hardware registers appear
as follows and may be read or written by sending the address and data information over
the two-wire serial interface.

Figure 1: Register Legend

Other memory locations are within the microcontroller block and may be accessed by
utilizing hardware registers from 0xC6:1 through 0xD1:1 (see the MT9D111 data sheet
for further details on how to use these registers). These are denoted below:

Figure 2: Firmware Variable Legend

The MT9D111 was designed to facilitate customizations to optimize image quality pro-
cessing. As the image data travels through the various stages of image processing, the
user can adjust the parameters in these stages to affect the images' appearances. This
section describes most of these available adjustments.

R0x08 :1[4:3]

Register #
(in hexadecimal)

Register
Bit(s)

Register Page #
 0 = sensor
 1 = IFP Page 1
 2 = IFP Page 2

Indication of Register
(as opposed to driver variable)

driver.variable

Name of Firmware Driver
(place driver’s ID code at
0xC6:1[12:8] for access)

Name of Driver’s Variable
(place variable’s offset value at

0xC6:1[17:0] for access)
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 8 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Two-Wire Serial Interface

Micron Confidential and Proprietary Advance
Two-Wire Serial Interface

Overview
The only external control interface to the MT9D111 is a two-wire serial interface. This
chapter shows how to access the MT9D111 registers. For the complete specification,
refer to the MT9D111 data sheet.

The MT9D111 contains 3 pages of registers as well as the firmware-driver variables. Each
page has 256 address locations, and each location is 16 bits wide. Not all locations and
bits are accessible (refer to the register table for detailed information on each register).
Included in these three pages is the indirect access for MCU (drivers) and JPEG memory.

The bus address of the two-wire serial interface is selectable between two sets of values.
Changing the state of the hardware pin, SADDR, or of R0x0D:0[10] selects between them
as follows:

Page Selection Register: R0xF0:0

Register 0xF0:0 is a unique register; it is used to select which of the 3 pages are active
when reading or writing. Physically there is only one register—regardless of which page
is selected it accesses the same content.

Reg 0xF0:0 = 0x0000 => Page 0, Sensor

Reg 0xF0:0 = 0x0001 => Page 1, SOC 1

Reg 0xF0:0 = 0x0002 => Page 2, SOC 2

Example: 16 Bit Register Read
This is an example of a 16 Bit Register read from Chip Version register (Reg0x00:0),
expected value = 0x1519

1. Send Start
2. Send Device Address
 a. 0xBA
3. Wait for ack
4. Send register address (8-bit)

 a. 0x00
5. Wait for ack
6. Send stop
7. Send start

Table 1: Selecting Values in the Bus Address (Read/Write)

Register SADDR Set High SADDR Set Low

R0x0D:0[10] = 0 (default) 0xBB/0xBA 0x91/0x90

R0x0D:0[10] = 1 0x91/0x90 0xBB/0xBA

Table 2: Register Page Description

Page Description

Page 0: Sensor Sensor and PLL control.
Page 1: SOC 1 SOC Image processing, and MCU register, MCU memory indirect access.
Page 2: SOC 2 JPEG control and Soc control. JPEG indirect memory access.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 9 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Two-Wire Serial Interface

Micron Confidential and Proprietary Advance
8. Send device address for read
 a. 0xBB

9. Wait for ack
10. Slave device sends 8-bit data (MSB byte)

 a. 0x15
11. Master send ack
12. Slave device sends another 8-bit data (LSB byte)

 a. 0x19
13. Master send nack
14. Send stop

Figure 3: Example of 16-Bit Register Read from Chip Version Register (Reg0x00:0), Value=0x1519

Example: 16 Bit Register Write
This is an example of a 16 bit register write to register (Reg0x20:1), value = 0xA5f0

1. Send Start
2. Send Device Address
 a. 0xBA
3. Wait for ack
4. Send register address (8-bit)

a. 0xF0
5. Wait for ack
6. Send 8 bit data (MSB byte)

a. 0x00
7. Wait for ack
8. Send another 8-bit data (LSB byte)

a. 0x01
9. Wait for ack

10. Send stop
11. Send Start
12. Send Device Address

a. 0xBA
13. Wait for ack
14. Send register address (8-bit)

a. 0x20
15. Wait for ack
16. Send 8 bit data (MSB byte)

Program register address for reading Read previously setup register

 ACK ACK ACK ACK NACK
 (S) (S) Start (S) (M) (M)

SCLK

SDATA

0xBA 0x00 0xBB 0x15 0x19

Start Stop Stop
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 10 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Two-Wire Serial Interface

Micron Confidential and Proprietary Advance
a. 0xA5
17. Wait for ack
18. Send another 8-bit data (LSB byte)

a. 0xF0
19. Wait for ack
20. Send stop

Figure 4: Example of 16-Bit Register Write to Register (Reg0x20:1), Value=0xA5F0

Accessing the Firmware Drivers' Variables
One register (R198:1) is used for the memory address and another (R200:1) is used for
data in the address.

Write Access
A write to the indirect access data register triggers a write to the targeted memory after
the two-wired serial interface has completed the WRITE cycle.

Read Access
Data is pre-fetched once the indirect access address register is updated; therefore, when
user reads from the indirect access data register, the data is available.

MCU Memory
Reg0x00C6:1[15:0], Indirect Access Address Register

Reg0x00C8:1[15:0], Indirect Access Data Register

JPEG Memory
Reg0x001E:2[15:0], Indirect Access Address Register

Reg0x001F:2[15:0], Indirect Access Data Register

Table 3: Reg0x00C6:1[15:0], Indirect Access Address Register

Bit Description

7:0 Bits 7:0 of address for physical access; driver variable offset for logical access.
12:8 Bits 12:8 of address for physical access; driver ID for logical access.

14:13 Bits 14:13 of address for physical access; R198:1[14:13] = 01 select logical access.
15 1 = 8-bit access; 0 = 16-bit

Setup access for Page 1 Write to Reg0x20:1

 ACK ACK ACK ACKStart ACK ACK ACK ACKStop
 Start (S) (S) (S) (S) (S) (S) (S) (S)

SCLK

SDATA

0xBA 0xF0 0x00 0x01 0xBA 0x20 0xA5 0xF0
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 11 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Two-Wire Serial Interface

Micron Confidential and Proprietary Advance
Table 4: Reg0x001E:2[15:0], JPEG Indirect Access Control Register

Bit Description

10:0 Indirect access address register: This 11-bit register contains the address of the
register or memory to be accessed indirectly.

12:11 Unused.
13 Enable two-wire serial interface burst: When this bit is set, the two-wire serial

interface decoder operates in burst mode for the indirect data register (READ
burst and WRITE burst). The longest burst supported is 16 (128 READ or WRITE
cycles).

14 Enable indirect writing: When set, data from the indirect data register is written to
the Indirect address location specified by [10:0] of this register except when auto-
increment is set. Reading the same address location when this bit is reset to "0.”

15 Address auto-increment: When this bit is set, the value in the indirect access
address register is automatically incremented after every read or write, to the JPEG
indirect access data register. This feature is used to emulate a burst access to
memory or registers being accessed indirectly.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 12 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Initializing the MT9D111

Micron Confidential and Proprietary Advance
Initializing the MT9D111

Power-up Sequence
There are no specific requirements to the order in which different supplies are turned
on. Once the last supply is stable within the valid ranges specified below, follow the hard
reset sequence to complete the power-up sequence.

Analog Voltage 2.8V for best image performance

Digital Voltage 1.8V ±0.1V (1.7V–1.9V)

I/O Voltage 1.7V–3.1V

Hard Reset Sequence
After power-up, a hard reset is required. Assuming all supplies are stable, the assertion
of RESET# (active LOW) will set the device in reset mode. The clock is required to be
active when RESET# is released. Hence, leaving the input clock running during the reset
duration is recommended. After 24 clock cycles (CLKIN), the two-wire serial interface is
ready to accept commands on the two-wire serial interface.

Note: Reset should not be activated while STANDBY is asserted.

A hard reset sequence to the camera can be activated by the following steps:

1. Wait for all supplies to be stable
2. Assert RESET# (active LOW) for at least 1µs
3. De-assert RESET# (input clock must be running)
4. Wait 24 clock cycles before using the two-wire serial interface

Soft Reset Sequence
A soft reset to the camera can be activated by the following procedure:

1. Bypass the PLL, R0x65:0=0xA000, if it is currently used
2. Perform MCU reset by setting R0xC3:1=0x0501
3. Enable soft reset by setting R0x0D:0=0x0021. Bit 0 is used for the sensor core reset

while bit 5 refers to SOC reset.
4. Disable soft reset by setting R0x0D:0=0x0000
5. Wait 24 clock cycles before using the two-wire serial interface

Note: No access to MT9D111 registers—both page 1 and page 2—is possible during soft
reset.

Standby Sequence
Standby mode can be activated by two methods. The first method is to assert STANDBY,
which places the chip into hard standby. Turning off the input clock (CLKIN) reduces
the standby power consumption to the maximum specification of 100mA at 55°C. There
is no serial interface access for hard standby.

The second method is activated through the serial interface by setting R13:0[2]=1 to the
register, known as the soft standby. As long as the input clock remains on, the chip will
allow access through the serial interface in soft standby.

Standby should only be activated from the preview mode (context A), and not the cap-
ture mode (context B). In addition, the PLL state (off/bypassed/activated) is recorded at
the time of firmware standby (seq.cmd=3) and restored once the camera is out of firm-
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 13 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Initializing the MT9D111

Micron Confidential and Proprietary Advance
ware standby. In both hard and soft standby scenarios, internal clocks are turned off and
the analog circuitry is put into a low power state. Exit from standby must go through the
same interface as entry to standby. If the input clock is turned off, the clock must be
restarted before leaving standby.

To Enter Standby
1. Preparing for standby
 a. Issue the STANDBY command to the firmware by setting seq.cmd=3
 b. Poll seq.state until the current state is in standby (seq.state=9)
 c. Bypass the PLL if used by setting R101:0[15]=1
2. Preventing additional leakage current during standby
 a. Set R10:1[7]=1 to prevent elevated standby current. It will control the bidirec-

tional pads DOUT, LINE_VALID, FRAME_VALID, PIXCLK, and GPIO.
 b. If the outputs are allowed to be left in an unknown state while in standby, the

current can increase. Therefore, either have the receiver hold the camera out-
puts HIGH or LOW, or allow the camera to drives its outputs to a known state by
setting R13:0[6]=1. R13:0[4] needs to remain at the default value of “0.” In this
case, some pads will be HIGH while some will be LOW. For dual camera sys-
tems, at least one camera has to be driving the bus at any time so that the out-
puts will not be left floating.

 c. For each GPIO that is left floating (which are set as inputs by default), configure
as outputs and drive LOW by the setting the respective bit to “0” in the GPIO
variables 0x1078, 0x1079, 0x1070, and 0x1071 (accessed via R198:1 and R200:1).
For example, if all GPIOs are floating inputs, the following settings can be used:
i. R198:1=0x1078
ii. R200:1=0x0000
iii.R198:1=0x1079
iv. R200:1=0x0000
v. R198:1=0x1070
vi. R200:1=0x0000
vii.R198:1=0x1071
viii.R200:1=0x0000

3. Check if other devices sharing the GPIO bus will have conflicts with this arrangement
 a. If a GPIO configured as an input is not allowed to be set as output during

standby, have the external source hold its output HIGH or LOW during standby.
4. Putting the camera in standby
 a. Assert STANDBY=1. Optionally, stop the CLKIN clock to minimize the standby

current specified in the MT9D111 data sheet. For soft standby, program standby
R13:0[2]=1 instead.

To Exit Standby
1. De-assert standby
 a. Provide CLKIN clock, if it was disabled when using STANDBY
 b. De-assert STANDBY=0 if hard standby was used. Or program R13:0[2]=0 if soft

standby was used
2. Reconfiguring output pads
3. If necessary, reconfigure the GPIOs back to the desired state by GPIO variables 0x1078

and 0x1079. Also set R10:1[7]=0 if any GPIOs are used as inputs.
4. Go to preview
5. Issue a GO_PREVIEW command to the firmware by setting seq.cmd=1
6. Poll seq.state until the current state is preview (seq.state=3)
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 14 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Initializing the MT9D111

Micron Confidential and Proprietary Advance
The following timing requirements should be met to turn off CLKIN during hard
standby:

1. After the asserting standby, wait 10 clock cycles before stopping the clock
2. Restart the clock 24 clock cycles before de-asserting standby

PLL Setup
The PLL output frequency is determined by three constants (M, N, and P) and the input
clock frequency. These three values are set in:

R102:0// [15:8] for M; [5:0] for N

R103:0// [6:0] for P

Their relations can be shown by the following equation:

fPLL, fOUT = fPLL, fIN, x M / [2 x (N+1) x (P+1)]

However, since the following requirements must be satisfied, then not all combinations
of M/N/P are valid:

M must be 16 or higher

fPFD, fVCO, fOUT ranges are satisfied

After determining the proper M, N, and P values and setting them in R102:0/R103:0, the
PLL can be enabled by the following sequence:

R101:0[14] = 0// powers on PLL

R101:0[15] = 0// disable PLL bypass (enabling PLL)

Note: If PLL is used, bypass the PLL (R101:0[15]=1) before going into hard standby. It can be
enabled again (R101:0[15]=0) once the sensor is out of standby.

Identifying Chip Version
The sensor version as well as the firmware version can be determined by a reading its
respective register/variable.

R0:0 (i.e. =0x1519) // sensor chip version #

mon.ver (ID=0, Offset=12, 8-bit variable) // firmware version #

Table 5: Frequency Parameters

Frequency Equation Min (MHz) Max (MHz)

fPFD fIN/ (N+1) 2 13

fVCO fPFD x M 110 240

fOUT fVCO / [2 x (P+1)] 6 80

fIN — 6 64
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 15 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Initializing FAQs

Micron Confidential and Proprietary Advance
Initializing FAQs
• Is there any other way to make entering Standby Mode faster?
• If the PLL settings must change during operation, which registers and which order

should we set? Could you show me sequence flow charts of context switch with PLL
setting changes?

Is there any other way to make entering Standby Mode faster? We recommend that
you follow the standby sequence we have outlined in the document because the MCU
needs to prepare for standby (seq.cmd = 3), then the sensor acknowledges standby
(seq.state = 9) and then asserts STANDBY. To make the camera enter standby mode
quicker, you can set the PLL to run at maximum frequency (80 MHz).

If the PLL settings must change during operation, which registers and which order
should we set? Could you show me sequence flow charts of context switch with PLL
setting changes? In order to change PLL settings, sensor core registers 0x65, 0x66, 0x67
are used. For the order of settings, see the flow chart in Figure 5.

Figure 5: PLL Setting Change Flow Chart
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 16 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Context Switching and Output Configuration

Micron Confidential and Proprietary Advance
Context Switching and Output Configuration

Context Switch and Setup
There are two contexts (or modes) available, A and B. Context A is known as the preview
mode and has a default resolution of 800 x 600, while context B is called the capture
mode with a default resolution of 1600 x 1200.

To switch from preview to the capture state, set the following variables:

• seq.captureParams.mode[1]=1// ID=1, Offset=0x20
• seq.cmd=2// ID=1, Offset=0x03
To switch from capture back into preview mode, the following settings are used:

• seq.captureParams.mode[1]=0// ID=1, Offset=0x20
• seq.cmd=1// ID=1, Offset=0x03
The current context mode can also be read via the serial interface from the variable
mode.context (DriverID=7, Offset=0x02). If mode.context is read back as logic "1", the
capture mode is active. When the bit is cleared, the current mode is preview.

For each context, there is a set of variables that enables the user to configure its proper-
ties. These settings are automatically put into effect by the firmware during context
switching. Examples of configurable options are: output resolution, crop sizes, data for-
mat, output FIFO, spoof mode, slew rate, special effects, and gamma table. For more
information, see the related description in this chapter or “Mode Driver-Setting up Pre-
view (A) and Capture (B) Modes” on page 116."

Changing the Output Resolution
In order to change the output size of a context, the associated context image height and
width values can be updated before switching to the targeted context. If the size is
changed for the current (active) context, then a refresh command (seq.cmd=5) needs to
be executed additionally.

For context A, use the variable "mode.Output Width A" (ID=7, offset=3) and "mode.Out-
put Height A" (ID=7, offset=5). For context B, use the variable "mode.Output Width B"
(ID=7, offset=7) and "mode.Output Height B" (ID=7, offset=9).

Selecting Output Data Formats
The MT9D111 can output several different formats. They are YCbCr, RGB565, RGB555,
RGB444, JPEG, and raw data.

To select between YUV and RGB, bit 5 of variables "mode.output_format_A" (ID=7, Off-
set=0x7D) and "mode.output_format_B" (ID=7, Offset=0x7E) should be used, depend-
ing on which context mode is of interest. Within RGB, 565/555/444x/x444 modes can be
chosen by bits 6–7 of the same variable:

A refresh is needed (seq.cmd=5) before the new settings are effective. As for JPEG
images, only context B has support for it. See “Enabling and Capturing JPEG” on page 27
for more details.

Table 6: Changing Output Format Variables

Bits[7:6] RGB Mode

00 16-bit RGB565
01 15-bit RGB555
10 12-bit RGB444x
11 12-bit RGBx444
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 17 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Context Switching and Output Configuration

Micron Confidential and Proprietary Advance
Other bits for "mode.output_format_A" (ID=7, Offset=0x7D) and
"mode.output_format_B" (ID=7, Offset=0x7E) are used for:

To select the 10-bit raw data from the sensor core, see “Raw Bayer Data Output.”

Raw Bayer Data Output
There are two ways to obtain raw Bayer data. In both cases, the data from the sensor
core bypasses the color pipeline. Hence, it does not go through the any of its image pro-
cessing units (however, AE, AWB, etc. may still be active).

The first option is to output the all 10 bits in parallel. In this case, DOUT0–DOUT7 repre-
sents sensor core data D[9:2] and GPIO[9:8] representing sensor core data D[1:0].

In order to put the sensor in this mode, the MCU (microcontroller unit) should first be
disabled by setting: R195:1=1// disable MCU

Next, enable the bypass mode with: R9:1=0// enable sensor core bypass

The pad slew while in bypass can be set using R10:1[2:0]. With the color pipeline and
MCU disabled, the sensor core parameters (integration time, gains, image size, power
mode, etc.) can be programmed manually.

The second option is to enable "8+2 bypass" by using DOUT0–DOUT7 only. In this mode,
the data bits are sent out in two bytes: D9–D2 in the first byte, and D1–D0 (with 0s pad-
ded in the more significant bit positions) for the second byte.

To enable this mode, first program register R9:1[2:0]=1 to set the proper data flow, then
turn on "8+2" with R152:1[6]=1.

Output Format and Timing
Uncompressed YUV or RGB data can be output either directly from the output format-
ting block or via a FIFO buffer with a capacity of 1,600 bytes, enough to hold one half
uncompressed line at full resolution. Buffering of data is a way to equalize the data out-
put rate when image decimation is used. Decimation produces an intermittent data
stream consisting of short high-rate bursts separated by idle periods. Figure 6 depicts
such a stream. High pixel clock frequency during bursts may be undesirable due to EMI
concerns.

Table 7: Output Format Option Configuration Settings

Bit Option / Configuration

0 In YUV output mode, setting this bit high would swap Cb and Cr channels. In RGB
mode, it will swap the R and B channel. This bit is subject to synchronous update.

1 Setting this bit high would swap the chrominance byte with luminance byte in
YUV output. In RGB mode, it will swap odd and even bytes. This bit is subject to
synchronous update.

2 Progressive Bayer.
3 Monochrome output.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 18 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Context Switching and Output Configuration

Micron Confidential and Proprietary Advance
Figure 6: Timing of Decimated Uncompressed Output Bypassing the FIFO

Note: PIXCLK default inverted.

Figure 7 depicts the output timing of uncompressed YUV/RGB when a decimated data
stream is equalized by buffering or when no decimation takes place. The pixel clock fre-
quency remains constant during each LINE_VALID high period. Decimated data are
output at a lower frequency than full size frames, which helps to reduce EMI.

Figure 7: Timing of Uncompressed Full Frame or Decimated Output Passing through the FIFO

Figure 8: Example of Timing for Non-Decimated Uncompressed Output Bypassing Output FIFO

The MT9D111 supports swapping YCrCb mode as illustrated in Table 8, YCrCb Output
Data Ordering, on page 20.

FRAME_VALID

LINE_VALID

PIXCLK

LINE_VALID

DOUT

 BT.601 code Pixel Data Pixel Data BT.601 Code

FRAME_VALID

LINE_VALID

PIXCLK

DOUT0-DOUT7

0xFF 0x00 0x00 0xAB 0xFF 0x00 0x00 0x80 Cb0 Y0 Cr0 Y1

Cb0 Y0 Cr0 Y1 0xFF 0x00 0x00 0x9D 0xFF 0x00 0x00 0xB6

PIXCLK

FRAME_VALID

LINE_VALID

DOUT0-DOUT7

PIXCLK

FRAME_VALID

LINE_VALID

DOUT0-DOUT7
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 19 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Context Switching and Output Configuration

Micron Confidential and Proprietary Advance
The RGB output data ordering in default mode is shown in Table 9. The odd and even
bytes are swapped when luma/chroma swap is enabled. R and B channels are bit-wise
swapped when chroma swap is enabled.

JPEG compression of IFP output produces a data stream structure that differs from that
of an uncompressed YUV/RGB stream. Frames are no longer sequences of lines of con-
stant length. This difference is reflected in the timing of the LINE_VALID signal. When
JPEG compression is enabled, logical HIGHs on LINE_VALID do not correspond to
image lines, but to variably sized packets of valid data. In other words, the LINE_VALID
signal is in fact a DATA_VALID signal. It is a good analogy to compare the JPEG output of
the MT9D111 to an 8-bit parallel data port wherein the LINE_VALID signal indicates
valid data and the FRAME_VALID signal indicates frame timing.

The JPEG compressed data can be output either continuously or in blocks simulating
image lines. The latter output scheme is intended to spoof a standard video pixel port
connected to the MT9D111 and for that purpose treats JPEG entropy-coded segments as
if they were standard video pixels. In the continuous output mode, JPEG output clock
can be free running or gated. In all, three timing modes are available and are depicted in
Figure 7 on page 19, Figure 8 on page 19, and Figure 9 on page 21. These timing dia-
grams are merely three typical examples of many variations of JPEG output. The “con-
tinuous” and spoof JPEG output modes differ primarily in how the LINE_VALID output
is asserted. In the continuous mode, LINE_VALID is asserted only during output clock
cycles containing valid JPEG data. The resulting LINE_VALID signal pattern is non-uni-
form and highly image dependent, reflecting the inherent nature of JPEG data stream. In
the spoof mode, LINE_VALID is asserted and de-asserted in a more uniform pattern
emulating uncompressed video output with horizontal blanking intervals. When
LINE_VALID is de-asserted, available JPEG data are not output, but instead remain in
the FIFO until LINE_VALID is asserted again. During the time when LINE_VALID is
asserted, the output clock is gated off whenever there is no valid JPEG data in the FIFO.

Note: As a result, spoof "lines" containing the same number of valid data bytes may be out-
put within different time intervals depending on constantly varying JPEG data rate.

Table 8: YCrCb Output Data Ordering

Mode

Default (no swap) Cbi Yi Cri Yi+ 1

Swapped CrCb Cri Yi Cbi Yi+1

Swapped YC Yi Cbi Yi+1 Cri

Swapped CrCb, YC Yi Cri Yi+1 Cbi

Table 9: RGB Ordering in Default Mode

Mode (swap disabled) Byte D7D6D5D4D3D2D1D0

RGB 565 Odd R7R6R5R4R3G7G6G5

Even G4G3G2B7B6B5B4B3

RGB 555 Odd 0 R7R6R55R4R3G7G6

Even G4G3G2B7B6B5B4B3

RGB 444x Odd R7R6R5R4G7G6G5G4

Even B7B6B5B4 0 0 0 0
RGB x444 Odd 0 0 0 0 R7R66R5R4

Even G7G6G5G4B7B6B5B4
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 20 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Context Switching and Output Configuration

Micron Confidential and Proprietary Advance
The host processor configures the spoof pattern by programming the total number of
LINE_VALID assertion intervals, as well as the number of output clock periods during
and between LINE_VALID assertions. In other words, the host processor can define a
temporal "frame" for JPEG output, preferably with "size" tailored to the expected JPEG
file size. If this frame is too large for the total number of JPEG bytes actually produced,
the MT9D111 either de-asserts FRAME_VALID or continues to pad unused "lines" with
zeros until the end of the frame. If the frame is too small, the MT9D111 either continues
to output the excess JPEG bytes until the entire JPEG compressed image is output or dis-
cards the excess JPEG bytes and sets an error flag in a status register accessible to the
host processor.

In the continuous mode, the JPEG output clock can be configured to be either gated off
or running while LINE_VALID is de-asserted. To save extra power, the JPEG output clock
can also be gated off between frames (when FRAME_VALID is de-asserted) in both con-
tinuous and spool output mode. In the continuous output mode, there is an option to
insert JPEG SOI (0xFFD8) and EOI (0xFFD9) markers respectively before and after valid
JPEG data. SOI and EOI can be inserted either inside or outside the FRAME_VALID
assertion period, but always outside LINE_VALID assertions.

The output order of even and odd bytes of JPEG data can be swapped in the spoof out-
put mode. This option is not supported in the continuous mode.

Output clock speed can optionally be made to vary according to the fullness of the FIFO,
to reduce the likelihood of FIFO overflow. When this option is enabled, the output clock
switches at three fixed levels of FIFO fullness (25 percent, 50 percent and 75 percent) to a
higher or lower frequency, depending on the direction of fullness change. The set of pos-
sible output clock frequencies is restricted by the fact that its period must be an integer
multiple of the master clock period. The frequencies to be used are chosen by program-
ming three output clock frequency divisors in the mode driver FIFO variables
(mode.fifo_conf1_A/B and mode.fifo_conf2_A/B). Divisor N1 is used if the FIFO is less
than 50 percent full and last fullness threshold crossed has been 25 percent. When the
FIFO reaches 50 percent and 75 percent fullness, the output clock switches to divisor N2
and N3, respectively. When the FIFO fullness level drops to 50 percent and 25 percent,
the output clock is switched back to divisor N2 and N1, respectively.

The host processor can read registers containing JPEG status flags and JPEG data length
(total byte count of valid JPEG data) via a two-wire serial interface. In addition, the JPEG
data length and JPEG status byte are always appended at the end of JPEG spoof frame.
JPEG status byte can be optionally appended at the end of JPEG continuous frame. JPEG
data stream sent to the host does not have a header.

Figure 9: Timing of JPEG Compressed Output in Free-Running Clock Mode

PIXCLK

FRAME_VALID

LINE_VALID

DOUT0-DOUT7

First JPEG Byte Last JPEG Byte

Status Byte

PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 21 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Context Switching and Output Configuration

Micron Confidential and Proprietary Advance
Figure 10: Timing of JPEG Compressed Output in Gated Clock Mode

Note: PIXCLK default inverted.

Figure 11: Timing of JPEG Compressed Output in Spoof Mode

Note: PIXCLK default inverted.

In the spoof mode, the timing of FRAME_VALID and LINE_VALID mimics an uncom-
pressed output. The timing of PIXCLK and DOUT within each LINE_VALID assertion
period is variable and therefore unlike that of uncompressed data. Valid JPEG data are
padded with dummy data to the size of the original uncompressed frame.

Decimation, Zoom, and Pan

Decimation
Registers linking to decimation can be automatically adjusted by setting the related
firmware variables. In preview mode, these variables need to be adjusted to 800 x 600 or
lower resolution:

• mode.Output Width A// ID=7, Offset=0x03
• mode.Output Height A// ID=7, Offset=0x05
As for capture mode, these variables need to be adjusted to a resolution of 1600 x 1200 or
lower:

• mode.Output Width B// ID=7, Offset=0x07
• mode.Output Height B// ID=7, Offset=0x09
Keep in mind that at all times, the output sizes above needs to be equal or smaller than
the input size to the decimator (crop sizes).

If the modification in decimation occurs for the current (active) context, a refresh com-
mand (seq.cmd=6) is needed to reflect the new values. Otherwise, a context switch to the
targeted context automatically refreshes in these values.

PIXCLK

FRAME_VALID

LINE_VALID

DOUT0-DOUT7

SOI
First JPEG Byte Last JPEG Byte

EOI

FRAME_VALID

LINE_VALID

LINE_VALID

PIXCLK

DOUT0-DOUT7

j0 = JPEG_data_length [7:0]
j1 = JPEG_data_length [15:8]
j2 = JPEG_data_length [23:16]
s = Status byte

Padded Data

 j0 j1 j2 s
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 22 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Context Switching and Output Configuration

Micron Confidential and Proprietary Advance
Zoom
The zoom feature can be enabled only if the output size is smaller than the cropped size
for each context mode. Once the output size is reduced, the crop size can be reduced
also to provide a “zooming” effect. The variables that are involved are:

For context A (preview):
mode.Output Width A// ID=7, Offset=0x03

mode.Output Height A// ID=7, Offset=0x05

mode.crop_left_A// ID=7, Offset=0x27

mode.crop_right_A// ID=7, Offset=0x29

mode.crop_lower_y_A// ID=7, Offset=0x2B

mode.crop_upper_y_A// ID=7, Offset=0x2D

seq.cmd=6// to refresh in the new settings

For context B (capture):
mode.Output Width B// ID=7, Offset=0x07

mode.Output Height B// ID=7, Offset=0x09

mode.decim_crop_left_B// ID=7, Offset=0x35

mode.decim_crop_right_B// ID=7, Offset=0x37

mode.decim_crop_lower_y_B// ID=7, Offset=0x39

mode.decim_crop_upper_y_B// ID=7, Offset=0x3B

seq.cmd=6// to refresh in the new settings

Pan
The Pan feature can be used once the image is zoomed in as describe above. In order to
move (or “Pan”) the image view horizontally or vertically, an offset is applied to the cor-
responding crop variables:

In preview mode, apply the same offset to “mode.crop_left_A” and “mode.crop_right_A”
to pan horizontally. Apply the same offset to “mode.crop_lower_y_A” and
“mode.crop_upper_y_A” to pan vertically.

As for capture mode, apply the same offset to “mode.decim_crop_left_B” and
“mode.decim_crop_right_B” to pan horizontally. Apply the same offset to
“mode.decim_crop_lower_y_B” and “mode.decim_crop_upper_y_B” to pan vertically.

Enabling Special Effects
Special effect (monochrome, sepia, negative, solarization) formats can be selected by
variables “mode.spec_effects_A” (ID=7, Offset=0x7F) in context A or
“mode.spec_effects_B” (ID=7, Offset=0x81) in context B. Their settings are shown in
Table 10.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 23 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Context Switching and Output Configuration

Micron Confidential and Proprietary Advance
Note: Seq.cmd=5 is also necessary to refresh the new settings for special effects.

Mirroring the Image
An image can be mirrored horizontally or vertically or both in the current context (A/B).
The registers associated to these functions are:

• R32:0[0]// set to mirror rows
• R32:0[1]// set to mirror columns

Column and Row Skip
Column and row Skipping are available in both context A and B. When enabled, the
image is subsampled, which results in a smaller dimension. This is one method used to
reduce image size and have less constraint on the row time requirements. In all cases,
the row and column sequencing ensures that the Bayer pattern is preserved. Skipping
can be enabled and configured by:

Context A
R33:0[3:2] // Row skip level (00=2x, 01=4x, 10=8x, 11=16x)

R33:0[4] // Row skip enable

R33:0[6:5] // Column Skip level (00=2x, 01=4x, 10=8x, 11=16x)

R33:0[7] // Column skip enable

Context B
R32:0[3:2] // Row skip level (00=2x, 01=4x, 10=8x, 11=16x)

R32:0[4] // Row skip enable

R32:0[6:5] // Column Skip level (00=2x, 01=4x, 10=8x, 11=16x)

R32:0[7] // Column skip enable

Note: For skip level 4x or higher, the MCU must be disabled by setting R195:1[0]=1. In addi-
tion, the proper image output and crop sizes must be updated beforehand. As an
example, the following values are set to enable 4x skipping in context A.

mode.Output Width A=400// ID=7, Offset=3

mode.Output Height A=300// ID=7, Offset=5

mode.crop_X1_A=400// ID=7, Offset=41

mode.crop_Y1_A=300// ID=7, Offset=45

seq.cmd=5// ID=1, Offset=3

R195:1[0]=1// disable MCU

R33:0=1204// 4x skipping, no binning

Table 10: Enabling Special Effects

Value of Bits[2:0] Effect

0 disabled (no special effects)
1 monochrome
2 sepia
3 negative
4 solarization with unmodified UV
5 solarization with UV
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 24 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Context Switching and Output Configuration

Micron Confidential and Proprietary Advance
Binning
The MT9D111 supports a 2 x 2 binning mode, which is used primarily instead of 2x skip
to decimate a picture without losing information. The effect of aliasing in preview mode
is eliminated when binning is used instead of just skipping rows and columns. To enable
binning in preview mode, R33:0[15] (or R32:0[15] for capture mode) should be set high.

For proper operation, the following to binning applies:

• Start address must be divisible by four (row and column)
• Window size must be divisible by four in both directions, after dividing by zoom fac-

tor and skip factor (because they both reduce the effective window size from the sen-
sor's point of view)

Example
Default row size = 1200. 8x zoom means the actual window on the sensor is divided by 8,
so 8x zoom and binning is not allowed with default window size, because 1200/8 = 150,
which is not divisible by 4.

• Since binning can be seen as an extra level of skip. The combination binning/16x skip
is not possible.

Configuring Pad Slew
During normal operation (no bypass), the slew rate for the DOUT0-DOUT7, PIXCLK,
FRAME_VALID, and LINE_VALID are set by mode variables. In context A, they are
defined by:

• mode.fifo_conf1_A[7:5]// PCLK1 slew rate (ID=7, Offset=109)
• mode.fifo_conf1_A[15:13]// PCLK2 slew rate (ID=7, Offset=109)
• mode.fifo_conf2_A[7:5]// PCLK3 slew rate (ID=7, Offset=111)
• seq.cmd=5// refresh for new settings to be effective
As for context B, they are set by:

• mode.fifo_conf1_B[7:5]// PCLK1 slew rate (ID=7, Offset=116)
• mode.fifo_conf1_B[15:13]// PCLK2 slew rate (ID=7, Offset=116)
• mode.fifo_conf2_B[7:5]// PCLK3 slew rate (ID=7, Offset=118)
• seq.cmd=5// refresh for new settings to be effective
The slew rate for GPIO[11:0] pads are set by R10:1[6:4] and SDATA pad by R10:1[10:8]. A
value of 7 is designated as the fastest slew while a value 0 is defined as the slowest slew.

Note: The actual slew depends on load, temperature, and I/O voltage. Hence the proper
slew rate should be tested and determined for each system. The default slew value
will not work for all setups.

For bypass mode-such as sensor or SOC bypass, as set by R9:1[2:0]-the slew rate for
DOUT0-DOUT7, PIXCLK, FRAME_VALID, and LINE_VALID is set by R10:1[2:0].

Capturing Still Pictures
In order to capture still images, the capture video mode bit must first be cleared:

seq.captureParams.mode[1]=0

Next, the specify the output image size for context B by using the variables "mode.Out-
put Width B" and "mode.Output Height B". If the image is cropped from the original
size, the following variables should also be set appropriately:

• mode.decim_crop_left_B // ID=7, Offset=0x35
• mode.decim_crop_right_B // ID=7, Offset=0x37
• mode.decim_crop_lower_y_B // ID=7, Offset=0x39
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 25 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Context Switching and Output Configuration

Micron Confidential and Proprietary Advance
• mode.decim_crop_upper_y_B // ID=7, Offset=0x3B
For example, if the user wants to capture a full resolution image (no cropping), these val-
ues should be set:

• mode.Output width_B= 1600 // ID=7, Offset=0x07
• mode.Output height_B=1200 // ID=7, Offset=0x09
• mode.decim_crop_left_B=0 // ID=7, Offset=0x35
• mode.decim_crop_right_B=1600 // ID=7, Offset=0x37
• mode.decim_crop_lower_y_B=0 // ID=7, Offset=0x39
• mode.decim_crop_upper_y_B=1200 // ID=7, Offset=0x3B
As for an 800x600 capture with no cropping:

• mode.Output width_B= 800
• mode.Output height_B=600
• mode.decim_crop_left_B=0
• mode.decim_crop_right_B=1600
• mode.decim_crop_lower_y_B=0
• mode.decim_crop_upper_y_B=1200
As for a VGA capture with cropping of 800 x 600:

• mode.Output Width B=640
• mode.Output Height B=480
• mode.decim_crop_left_B=0
• mode.decim_crop_right_B=800
• mode.decim_crop_lower_y_B=0
• mode.decim_crop_upper_y_B=600
If the image size is less than or equal to 800 x 600, binning mode with 1ADC must be
enabled by:

• R32:0[10]=1 and R32:0[15]=1
In addition, set the horizontal blanking for context B (R5:0) such that the integration
time is the same as preview mode.

Next, set how many frames to be issued in capture mode before sequencer goes back to
preview mode:

• seq.captureParams.numFrames=2 // 2 for this example (ID=1, Offset=0x21)
Lastly, call the "CAPTURE" command:

• seq.cmd=2 // ID=1, Offset=0x03

Capturing Videos
First, set the capture video mode bit by:

seq.captureParams.mode[1]=1 // ID=1, Offset=0x20

Next, specify the output size with “mode.Output Width B” and “mode.Output Height B”.
Similar to the "Capturing Still Pictures" on page 25, the appropriate variables (ID=7, Off-
set=0x35/37/39/3B) also need to be adjusted if cropping is used.

If the image size is less than or equal to 800x600 turn on power (1ADC) and binning
mode for context_B:

R32:0[10]=1, R32:0[15]=1

Set H_Blanking for context_B (R5:0) to keep the same integration time as in a preview
mode. Set mode.sensor_x_delay_B (ID=7, Offset=0x23) to adjust frame timing accu-
rately. Set V_Blanking for contest_B (R6:0) to obtain 30 fps or another target frame rate.

Lastly, call the "CAPTURE" command:
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 26 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Context Switching and Output Configuration

Micron Confidential and Proprietary Advance
• seq.cmd=2 // ID=1, Offset=0x03
To stop video capture and return back to preview, call "PREVIEW" command:

• seq.cmd=1

Enabling and Capturing JPEG
In order to enable JPEG output, the user needs to confirm the following value:

mode.mode_config[5] = 0 // ID=7, offset=0x0B

JPEG is supported in context B, not A. If the JPEG size needs to be changed, the context B
image height and width needs to be updated. For example, to change the JPEG image to
800x600 requires the following:

• VAR=7, 0x07, 0x0320 // MODE_OUTPUT_WIDTH_B
• VAR=7, 0x09, 0x0258 // MODE_OUTPUT_HEIGHT_B
After enabling JPEG output, a still JPEG image can be captured by following the proce-
dure in the "Capturing Still Pictures" on page 25. For JPEG video, enable JPEG output,
then follow "Capturing Videos" on page 26.

Switching Between JPEG 4:2:2, 4:2:0, and Monochrome
Before going into the capture mode for JPEG images, the desired resolution and format
should be selected. To set the output size, these variables need to have the target values:

• mode.Output Width B // output width for capture (ID=7, Offset=0x07)
• mode.Output Height B // output height for capture (ID=7, Offset=0x09)
As for the JPEG format, the user can select between 4:2:2, 4:2:0 or monochrome by set-
ting the variable:

• jpeg.format // 0=4:2:2, 1=4:2:0, 2 = monochrome (ID=9, Offset=0x06)

Note: For the 4:2:0 format, the maximum width is 384 pixels (no special restriction on
height). Next, switch to capture mode (see "Context Switch and Setup" on page 17) to
output the new JPEG settings.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 27 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Context Switching and Output Configuration FAQs

Micron Confidential and Proprietary Advance
Context Switching and Output Configuration FAQs
• What are the recommended settings if we want to share 1 ADC in contexts A and B

because brightness changes when mode change?
• Is it possible to have the same pclk in Context A and Context B?
• Is it possible to use only 1 ADC in context B? How do we disable the default JPEG set-

ting to use YUV4:2:2?
• Is it required to write seq.cmd=1(Do preview) but only seq.cmd=5(Refresh) when the

camera starts up?
• Is there seq.cmd writing timing limitation? In our evaluation when I wrote seq.cmd=5

after seq.cmd=1, the setting of seq.cmd=5 was not reflected.

What are the recommended settings if we want to share 1 ADC in contexts A and B
because brightness changes when mode change? When context A and context B share
1 ADC, it is best to enable the AE driver in the captureEnter state. One may be trying to
minimize the state transition time by skipping previewLeave and captureEnter states.
However, there is a trade-off here between quality and time. Therefore, we recommend
having the following settings:

• VAR8=1, 0x37, 0x0001 // SEQ_PREVIEW_3_AE (fast AE in captureEnter state)
• VAR8=1, 0x3D, 0x0000 // SEQ_PREVIEW_3_SKIPFRAME (no skipping captureEnter

state)
The previewLeave state may be skipped, but in order to have same brightness in context
A and B, captureEnter state should not be skipped.

Is it possible to have the same pclk in Context A and Context B? Yes, it is possible to
have the same PCLK frequency in context A and context B. If this setup is used, both
contexts will need to have the same number of ADC. Horizontal blanking will also need
adjustments otherwise column FPN might appear.

Is it possible to use only 1 ADC in context B? How do we disable the default JPEG set-
ting to use YUV4:2:2? It is possible to use only 1 ADC in context B. Rev2 and Rev3 have
JPEG as the default setting for context B. To disable JPEG and use YUV422, set the fol-
lowing settings:

• Mode.mode_config: ID=7, Offset=11, bit 5 = 1 // bypass JPEG
• Mode.fifo_conf1_B: ID=7, Offset=116, bit[3:0] = 1 // N1

Is it required to write seq.cmd=1(Do preview) but only seq.cmd=5(Refresh) when the
camera starts up? At startup, the MT9D111 will automatically go into preview mode
after initialization. Hence, no seq.cmd=1 (go to preview) or seq.cmd=5 (refresh) is
needed. However, if settings for context A is changed (such as image size), then the fol-
lowing command is needed:

if firmware settings for context A is changed while the current context is A, then
seq.cmd=5 (refresh is needed).

if firmware settings for context A is changed while the current context is B, then
seq.cmd=1 (go to preview) will go to context A and automatically refresh (no seq.cmd=5
is needed).

For example, to set an image size of 160 x 120 (with RGB format) while in context A, the
following sequence is needed:

VAR=7, 0x03, 0x00A0 // MODE_OUTPUT_WIDTH_A

VAR=7, 0x05, 0x0078 // MODE_OUTPUT_HEIGHT_A

VAR8=7, 0x7D, 0x0020 // MODE_OUTPUT_FORMAT_A
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 28 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Context Switching and Output Configuration FAQs

Micron Confidential and Proprietary Advance
VAR8=1, 0x03, 0x0005 // SEQ_CMD (refresh in the new settings above)

Crop settings are used for zooming and panning purposes. They are not needed if you
simply want to resize the original image.

Is there seq.cmd writing timing limitation? In our evaluation when I wrote seq.cmd=5
after seq.cmd=1, the setting of seq.cmd=5 was not reflected. Setting seq.cmd=1 auto-
matically refreshes for the new settings, hence seq.cmd=5 is not needed in this case. The
context switch will automatically check for new settings. In terms of timing, seq.state
variable (which is a status variable located in ID=1, offset=4) should be monitored
(polled) for the status of the firmware.

For example, if the user wants to switch from context A to B, and back to A IMMEDI-
ATELY, then one should follow the timing:

(while in preview: seq.state=3)

issue seq.cmd=2 (go to context B)

poll seq.state, make sure it is equal to 7 before issuing seq.cmd=1 (go back to context A)

The above is just a sample, in most cases, the user will not switch back and forth from A
to B immediately. While the firmware switches from context A to B, the seq.state value
will travel from 3 to 7. If a command to “go back to context A” is called before
seq.state=7, it will not work because the current state is not context B yet. Note that the
time required to switch from A to B is small (several frames) and depends on the clock
frequency.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 29 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Gamma and Contrast

Micron Confidential and Proprietary Advance
Gamma and Contrast

Figure 12: Gamma Correction Curve

Gamma
Because most video systems have been designed to compensate for the non-linear light-
intensity response of the CRT, the camera should output a gamma-corrected image.
This means that an exponential gamma curve should be applied to the image before it
leaves the camera system so that when it is viewed on a CRT of other modern imaging
system, it does not appear too dark.

The MT9D111 image processing chain contains a gamma correction stage. All pixel val-
ues (in RGB color coordinates) are remapped to new values based on a piecewise linear
extrapolation from a 19 point lookup table. The image pixel data coming in to the
gamma correction stage is 12 bits (0–4095) and is remapped to 8-bit values (0–255). The
19 input points of the gamma table correspond to the following values: 0, 64, 128, 256,
512, 768, 1024, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584, 3840, and 4095.
(There are more points at the low pixel values where gamma curves usually change the
most.)

Each input point is mapped to an output point (0–255). Pixel values that fall between two
points are calculated based on a linear extrapolation between the nearest two points.
Each of the three colors (R, G, and B) use the same input gamma table. Either the mode
driver can calculate the values that make up this lookup table, or the user can upload a
custom table.

The mode driver remembers the identity of two separate gamma tables:

• one gamma table for preview (A) mode
• one gamma table for capture (B) mode
Upon each mode change, these tables are calculated and uploaded to the appropriate
hardware registers at the end of the current frame. For changes to be immediately
apparent in the image during development, the user must issue a refresh command (5)
to the sequencer.cmd variable so that the new values are recalculated an uploaded with-
out changing modes.

For each mode (A or B), the user can select from three predefined gamma tables, or
upload and select a custom table. The predefined tables can be selected by changing the
mode driver variables gam_cont_A, bits[2:0], or gam_cont_B, bits[2:0], depending on the

64

96

128

160

192

224

256

0 256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840 4096

INPUT

O
U

TP
U

T

0

 32

Programmable
Gamma Points
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 30 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Gamma and Contrast

Micron Confidential and Proprietary Advance
intended mode (see mode driver variable description). Setting this value to 3 causes the
mode driver to use the values stored in the mode driver variables gamma_table_A/B_0
though gamma_table_A/B_18 to construct the gamma table.

Contrast
Contrast enhancement can be mathematically applied to the gamma curve to give the
image the appearance of wider dynamic range, but at the cost of slight errors in the color
hues. The mode driver allows for predefined levels of contrast enhancement to be
applied to each mode's gamma setting (or table) before updating the gamma-correction
image processor. The contrast level may be set using the mode driver variables
gam_cont_A, bits[6:4], or gam_cont_B, bits[6:4], depending on the intended mode (see
mode driver variable description).

For changes to be immediately apparent in the image during development, the user
must issue a refresh command (5) to the sequencer.cmd variable so that the new values
are recalculated and uploaded without changing modes. Otherwise, the new settings
take effect upon the next sequencer state change. The mode driver applies an s-curve
function (see "S-Curve" section in documentation for more details) to the selected
gamma table values and this result is uploaded to the gamma-correction image proces-
sor.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 31 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Gamma and Contrast FAQs

Micron Confidential and Proprietary Advance
Gamma and Contrast FAQs
• How are brightness, contrast, saturation, sharpening, and color tones adjusted?
• Can contrast be adjusted by the predefined S-curves?
• How are Color tones set?
• Does aperture correction mean sharpening? Is it programmable, so that the desired

amount of sharpening can be done?
• Is it possible increase or decrease the color saturation?
• The sensor output does not correspond to normal bayer output when binning is used.

Do you use different bayer interpolation algorithm for binned and full output modes?

How are brightness, contrast, saturation, sharpening, and color tones adjusted?
There are different methods of changing brightness of the image—a luminance offset
can be applied at the output or the exposure target can be changed from the default
value.

LCD display brightness should be changed by programming luma offset. Snapshot/pic-
ture brightness should be changed using ae.target. Changing gamma to change bright-
ness is not recommended—just set the gamma to match your display device.

Can contrast be adjusted by the predefined S-curves? Yes.

How are Color tones set? Color tones such as sepia, B&W, and negative are program-
mable via variables mode.spec.effects_A and mode.spec.effects_B.

Does aperture correction mean sharpening? Is it programmable, so that the desired
amount of sharpening can be done? Yes, aperture correction sharpen edges and the
desired amount of sharpening is programmable.

Is it possible increase or decrease the color saturation? Yes, by interpolation CCM
between 100 percent saturated and unit matrix.

The sensor output does not correspond to normal bayer output when binning is used.
Do you use different bayer interpolation algorithm for binned and full output modes?
Sensor is outputting the data in the same bayer pattern configuration during binning
and therefore no other interpolation algorithm is necessary. The sensor output is the
same for both modes.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 32 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Lens Shading and Correction

Micron Confidential and Proprietary Advance
Lens Shading and Correction

Introduction
This section outlines the lens shading basics featured in the MT9D111 and shows how to
adjust the lens shading settings automatically. Miniature camera modules have signal
degradation on sensor periphery due to optical and geometrical factors. Lens shading
correction compensates the signal degradation by digitally gaining pixels on the image
periphery.

Lens Shading Approach
The digital gain to correct signal degradation can be expressed as the following:

Gain(x, y, color) = 1 - G + Fhorizontal(x, color) + Fvertical(y, color) + k * Fhorizontal(x, color)
* Fvertical(y, color)

Where:

color = R, G, or B

K is the corner parameter, defined by register 0xAE.

G is a global constant, define by register 0xAD, which offsets the maximum gain of 1 (G is
set to 0 for lens shading Auto-Adjust function).

The signal of each pixel is gained as follows:

SignalAFTER_LC = SignalBEFORE_LC*Gain(x,y,color)

The relationship of the signal before and after is shown in Figure 13.

Figure 13: Signal

In the MT9D111, Fhorizontal(x, color) and Fvertical(y, color) are piecewise quadratic
(PWQ). The sensor is divided into 8 zones in the x and y directions (see Figure 14).
Therefore, each function for each color is represented by 10 numbers—8 numbers for
the 8 zone values in the corresponding direction and two initial conditions used to itera-
tively calculate function values across the entire pixel array.

G
ai

n

Si

g
n

al

Si
g

n
al

1 1600 1 1600

1 1600

*

PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 33 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Lens Shading and Correction

Micron Confidential and Proprietary Advance
Figure 14: Lens Correction Zones

Note: The array center parameters, Cx and Cy, are defined by Register 0x87 (bit 0~7 for X coordi-
nate, 8~15 for Y coordinate).

Setup
1. Start up DevWare version 2.6 Beta 5 (or above) and camera in the default state
2. Point camera at a flat and uniformly illuminated calibration target (the variation in

light intensity should be no more than 5 percent, target under Daylight (6500K) pro-
duces the best result). For best result, the light source and sensor demo system should
be shielded from external light sources.

Figure 15: DevWare Toolbar

3. RESET—Reset all when loaded DevWare
4. Default—Sets all registers to default
5. The automatic lens correction algorithm operates in either 800 x 600 viewfinder mode

(preview) or 1600 x 1200 full resolution mode (full auto). The user can simply leave at
the default preset mode, or change to full auto mode and click on zoom out once to
see the full image on the screen.

X
0

X
1

X
2

Y
1

X
5

X
4

X
3

Y
0

Y
2

Y
5

Y
4

Y
3

Array
Center

C
Y

CX
X

PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 34 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Lens Shading and Correction

Micron Confidential and Proprietary Advance
Preset and Load

Figure 16: Presets Dialog Box

Select “Lens Correction: Setup” in Preset window and click “Load.” This loads all rele-
vant register conditions that are needed to perform lens correction. The user can also
choose not to load this setup setting and manually set all initial conditions listed in the
following section.

Setup Conditions
1. Select Sensor Control
2. Select Gamma, Saturation and set the gamma to 1.0
3. Select Sensor Control and then Auto Exposure. Open Graphs to look at the intensity

graph before calibration. Adjust Brightness Target so peak brightness is about 75 per-
cent of the maximum intensity scale on the Analysis Graph (this correspond to about
180), then turn off Auto Exposure.

4. Select Sensor Control and then White Balance and turn off Auto White Balance.
5. Go to Sensor Control -> White Balance -> IF Settings and turn off Color Correction
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 35 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Lens Shading and Correction

Micron Confidential and Proprietary Advance
Figure 17: Setting Gamma to 1.0
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 36 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Lens Shading and Correction

Micron Confidential and Proprietary Advance
Figure 18: Enable Auto Exposure
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 37 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Lens Shading and Correction

Micron Confidential and Proprietary Advance
Figure 19: Disable AWB and Color Correction

Calibration
1. Set the row and column line at the middle row/column of the image. (In preview

mode set row line at 300, set column line at 400. In full auto mode with 0.5x zoom, set
row line at 600, column line at 800.)

2. Open Analysis Graph and view the Intensity plot of the middle row/column of the
image. This will produce an analysis graph.

3. Go to Sensor Control -> Lens Correction and follow the examples in Figure 21.
4. Observe the progress on the Analysis Graph as in Figure 22. When the graph has set-

tled, unchecked Auto-Adjust.
5. Observe the progress on the Analysis Graph as in Figure 22. When the graph has set-

tled, unchecked Auto-Adjust.
6. Slide the horizontal scroll bar all the way to the right so the “k factor” slider becomes

visible. Adjust k factor for the best appearance of the corners.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 38 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Lens Shading and Correction

Micron Confidential and Proprietary Advance
7. Make other final adjustments as you judge necessary. The user has the option to
choose not to completely calibrate the lens to obtain flat intensity curves by selecting
different percentage for curvature. 100 percent correspond to a completely flat curve.
See Figure 24 for correlation between percentage and curvature.

8. Click Save As… to save the lens correction as an.ini file.
9. Load the new settings in DevWare and check the image quality.

Figure 20: Setting the Row and Column Line
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 39 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Lens Shading and Correction

Micron Confidential and Proprietary Advance
Figure 21: Sensor Control Dialog Box Showing Lens Correction Settings

Figure 22: Settled Analysis Graph

Check All

Set to 1 (1st Deriv does
not need to be set—
when Auto-Adjust
starts, 1st Deriv is
adjusted automatically)

Check Auto-Adjust

Click to start from flat gain
correction curve

Check Enable
Lens Correction

Uncheck Knees Only
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 40 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Lens Shading and Correction

Micron Confidential and Proprietary Advance
Figure 23: Adjusting K Factor

Figure 24: Correlation Between Percentage and Curvature

Result
Figure 25 shows a set of data and images BEFORE (on the left) and AFTER (on the right)
the lens correction calibration procedure.

Bright corners

Click to save the register

Darker corners

Choose different percent for
curvature adjustment
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 41 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Lens Shading and Correction

Micron Confidential and Proprietary Advance
Figure 25: Lens Correction Result, Before and After

Figure 26: Intensity Graph (horizontal) Before and After

Figure 27: Intensity Graph (vertical) Before and After

Verification
For a thorough verification of lens corrected image results, the following steps are rec-
ommended:

1. Place the MT9D111 camera module in front of flat and uniformly illuminated targets
for inspection. The following scenarios are suggested: Daylight (6500K), Incandescent
(2850K), Cool White Florescent (5300K).

2. Load DevWare and reset all registers (this enables AWB, Color correction, AE, Gamma
Correction).

3. Open Preset window, click on “Browse…” and locate the lens correction.ini file.
4. For each of the scenario, look at the picture for visual inspection and the intensity

graph to see if a flat curve for each color (R,G,B) is obtained.
5. Point the camera module at a well-lit scenery and inspect the picture as a last check

on image quality.
6. If needed, repeat the Lens correction procedure to obtain improved register setting

values and repeat the verification process to check image quality.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 42 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Lens Shading and Correction

Micron Confidential and Proprietary Advance
Figure 28: Locating the Lens Correction.ini File

Related Register List
REG=2, 0x80 //LENS_CORRECTION_CONTROL

REG=2, 0x81 //ZONE_BOUNDS_X1_X2

REG=2, 0x82 //ZONE_BOUNDS_X0_X3

REG=2, 0x83 //ZONE_BOUNDS_X4_X5

REG=2, 0x84 //ZONE_BOUNDS_Y1_Y2

REG=2, 0x85 //ZONE_BOUNDS_Y0_Y3

REG=2, 0x86 //ZONE_BOUNDS_Y4_Y5

REG=2, 0x87 //CENTER_OFFSET

REG=2, 0x88 //FX_RED

REG=2, 0x89 //FX_GREEN

REG=2, 0x8A //FX_BLUE

REG=2, 0x8B //FY_RED

REG=2, 0x8C //FY_GREEN

REG=2, 0x8D //FY_BLUE

REG=2, 0x8E //DF_DX_RED

REG=2, 0x8F //DF_DX_GREEN

REG=2, 0x90 //DF_DX_BLUE

REG=2, 0x91 //DF_DY_RED

REG=2, 0x92 //DF_DY_GREEN

REG=2, 0x93 //DF_DY_BLUE

REG=2, 0x94 //SECOND_DERIV_ZONE_0_RED
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 43 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Lens Shading and Correction

Micron Confidential and Proprietary Advance
REG=2, 0x95 //SECOND_DERIV_ZONE_0_GREEN

REG=2, 0x96 //SECOND_DERIV_ZONE_0_BLUE

REG=2, 0x97 //SECOND_DERIV_ZONE_1_RED

REG=2, 0x98 //SECOND_DERIV_ZONE_1_GREEN

REG=2, 0x99 //SECOND_DERIV_ZONE_1_BLUE

REG=2, 0x9A //SECOND_DERIV_ZONE_2_RED

REG=2, 0x9B //SECOND_DERIV_ZONE_2_GREEN

REG=2, 0x9C //SECOND_DERIV_ZONE_2_BLUE

REG=2, 0x9D //SECOND_DERIV_ZONE_3_RED

REG=2, 0x9E //SECOND_DERIV_ZONE_3_GREEN

REG=2, 0x9F //SECOND_DERIV_ZONE_3_BLUE

REG=2, 0xA0 //SECOND_DERIV_ZONE_4_RED

REG=2, 0xA1 //SECOND_DERIV_ZONE_4_GREEN

REG=2, 0xA2 //SECOND_DERIV_ZONE_4_BLUE

REG=2, 0xA3 //SECOND_DERIV_ZONE_5_RED

REG=2, 0xA4 //SECOND_DERIV_ZONE_5_GREEN

REG=2, 0xA5 //SECOND_DERIV_ZONE_5_BLUE

REG=2, 0xA6 //SECOND_DERIV_ZONE_6_RED

REG=2, 0xA7 //SECOND_DERIV_ZONE_6_GREEN

REG=2, 0xA8 //SECOND_DERIV_ZONE_6_BLUE

REG=2, 0xA9 //SECOND_DERIV_ZONE_7_RED

REG=2, 0xAA //SECOND_DERIV_ZONE_7_GREEN

REG=2, 0xAB //SECOND_DERIV_ZONE_7_BLUE

REG=2, 0xAC //X2_FACTORS

REG=2, 0xAD //GLOBAL_OFFSET_FXY_FUNCTION

REG=2, 0xAE //K_FACTOR_IN_K_FX_FY

STATE=Lens Correction Center X, 800

STATE=Lens Correction Center Y, 600

BITFIELD=1, 0x08 //LENS_CORRECTION
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 44 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Lens Shading and Correction FAQs

Micron Confidential and Proprietary Advance
Lens Shading and Correction FAQs
• Where are the lens shading correction control registers located?
• Can the lens shading calibration be used for AF calibration?

Where are the lens shading correction control registers located? The lens shading cor-
rection control register is located in R128:2. The lens shading feature can be turned on/
off by R8:1[2]. Other lens correction settings can be found in R129:2 to R174:2. For more
details on the registers, refer to the latest MT9D111 data sheet.

Can the lens shading calibration be used for AF calibration? Our lens shading calibra-
tions are for only one position as there is only one set of values. This may introduce
some minor deviation from ideal correction values if the focus movement causes the
field of view to change, but it is likely undetectable.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 45 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Exposure

Micron Confidential and Proprietary Advance
Auto Exposure

Overview
The auto exposure (AE) algorithm performs automatic adjustments of the image bright-
ness by controlling the exposure time and analog gains of the sensor core as well as the
digital gains applied to the image.

Two auto exposure algorithm modes are available:

• preview
• scene evaluative
Auto exposure is implemented by means of a firmware driver that analyzes image statis-
tics collected by exposure measurement engine, decides the best exposure and gain set-
tings, and programs the sensor core and color pipeline accordingly. The measurement
engine subdivides the image into 16 windows organized as 16 programmable equal-size
rectangular windows forming a 4 x 4 grid.

Preview Mode
In preview mode, 16 windows are combined in two segments: central and peripheral.
The central segment includes the four central windows. All remaining windows belong
to the peripheral segment. Scene brightness is calculated as average luma in each seg-
ment taken with certain weights. The variable ae.weights[3:0] specifies the central zone
weight, and ae.weights[7:4] specifies the peripheral zone weight. The preview exposure
mode is activated during preview or video capture. It relies on the AE measurement
engine that tracks the speed and amplitude of the change of the overall luminance in the
selected windows of the image. The backlight compensation is achieved by weighing the
luminance in the center of the image higher than the luminance on the periphery. Other
algorithm features include the rejection of fast fluctuations in illumination (time averag-
ing), control of the response speed, and control of the sensitivity to the small changes.
While the default settings are adequate in most situations, the user can program the tar-
get brightness, the measurement window, and other parameters described above.

Scene Evaluative Mode
A scene evaluative AE algorithm is available for use in “snapshot” mode. The algorithm
performs scene analysis and classification with respect to its brightness, contrast and
composure, and then decides to increase, decrease or keep original exposure target. It
makes the most difference for backlight and bright outdoor conditions.

AE Sport Mode
Digital sensor “sport mode” is essentially reducing motion-blur by limiting the exposure
time to a small amount while allowing increased gain to compensate. The MT9D111 AE
algorithm allows for advanced control over its parameters.

Based on the “Gain vs. Exposure” in the specification sheet, the host can upload register
values to limit the exposure time. These limits may be uploaded to ae.IndexTH23 or
ae.maxindex. Using ae.IndexTH23 allows for slower shutter speeds if the exposure/gain
limits are insufficient to capture the scene. Using ae.maxindex to limit the exposure time
sets the absolute AE limit, and thus low-light scenes will appear dark.

The value of either the ae.maxindex or ae.IndexTH23 is the integer multiple of the 50 or
60Hz period respectively, (depending on current flicker frequency) in the units of # of
sensor lines. For example, if the required sport shutter speed is less than 1/100 seconds
then, taking the longest of the two flicker periods 50Hz (rectified = 100Hz), the maxi-
mum AE index should be set to 1. Issue a REFRESH Sequencer command after upload-
ing new driver parameters for them to take effect.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 46 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Exposure

Micron Confidential and Proprietary Advance
How to Calibrate the AE Exposure Value (EV) Reference
The AE driver translates the luminance data in to EV for some decisions (e.g.,
seq.sharedParams.FlashTH). This translation must be calibrated to ensure accurate
results. This calibration should occur after the lens module has been calibrated for roll-
off.

To calibrate:

• place an 18 percent reflectance grey card in full sunlight
• point the camera at the card so that the entire frame is filled with the grey card image
• allow the AE algorithm to settle on a new exposure time
• change the value of ae.mmShiftEV until the ae.mmMeanEV variable shows a value of

15 (EV)

How to Modify the Image Brightness
The appearance of the final image can be adjusted by a variety of controls each with a
different specific effect on brightness.

When using the auto exposure driver, the target luminance of the MT9D111 can easily
be changed by modifying the variable ae.Target. This causes the AE to select a different
exposure time/gain combination to capture a brighter or dimmer image histogram.

To attain a relative exposure value (EV) number from the ae.Target value, use the rela-
tion: relative EV = LOG(ae.Target/reference ae.Target)/LOG(2) where each log is base-
10. Reference ae.Target is the normal (EV=0) operating target, and ae.Target is the new
position. For example, if the normal ae.Target is 75, then to get an EV value of +1, the
ae.Target should be set to 150.

Modifying the gamma curve characteristics is another method to affect the final image's
brightness. These controls are found in the mode driver's gam_cont_A/B variables (see
data sheet and/or "Gamma and Contrast"). A preloaded gamma table can be selected or
a user-defined gamma table may be uploaded. Using the gamma table to affect bright-
ness allows brightening some shades in the image while leaving others as it is. This
maintains the image's dynamic range while boosting the overall brightness.

The mode-driver variables y_rgb_offset_A/B (these overwrite hardware register 0xBF:1)
allow for an offset to be applied to the image data. Changing these values alters the
apparent brightness whether the system is outputting RGB data or YUV data. This
adjustment only shifts the image histogram data and is not a good option for increasing
the image quality.

How to Speed Up and Slow Down AE Adjustments
Three variables in the AE driver influence the AE speed:

• ae.SkipFrames—Specifies how many frames AE driver has to skip between AE register
calculations. Larger numbers slow the AE.

• ae.JumpDivisor—Specifies how much luminance that the AE jumps in one calcula-
tion. 1: full distance, 2: half-distance, 3: 1/3rd of the distance, and so on. The smaller
the number, the faster the AE (1 is minimal number). The bigger the number, the
smoother the AE. (The expected brightness after one AE step is Ynew= ae.CurrentY +
(ae.Target – ae.CurrentY) / ae.JumpDivisor)

• ae.lumaBufferSpeed—Speed of luma buffering (32=fastest, 1=slowest). To avoid
unwanted reactions of the AE on small fluctuations of scene brightness or of momen-
tary scene changes, the AE driver uses a temporal filter for the luminance.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 47 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Exposure

Micron Confidential and Proprietary Advance
Values: ae.lumaBufferSpeed = 32, ae.SkipFrames = 0, and ae.JumpDivisor=1 specify the
maximum AE speed, but the image may appear to oscillate in certain dynamic lighting
conditions.

The Sequencer controls AE speed in every state by the variables:

seq.sharedParams.aeContBuff

seq.sharedParams.aeContStep

seq.haredParams.aeFastBuff

seq.sharedParams.aeFastStep

For example, to achieve the fastest AE during the "Leave Preview" state, set:

seq.sharedParams.aeFastBuff=32

seq.sharedParams.aeFastStep=1,

and select the fast AE mode for the "Leave Preview" state:

Seq.previewParLeave.ae=1

The AE requires more time to achieve a luminance target if the scene suddenly becomes
bright as compared to if the scene suddenly becomes dark. To quicken the light to dark
AE adjustment time, set the variable ae.status[7] to 1.

How to Maintain Specific Frame Rates
Specific frame rates are attained by establishing a set of image timing variables (i.e.,
hblank, vblank, PLL timing, extra delay, etc.). However, the integration time (also known
as the shutter width) may be longer than a frame time for low light scenes. This causes
the frame rate to be dependent on the lighting conditions. To avoid drop in the frame
rate, the AE driver provides several optional controls.

To reject flicker, integration time is adjusted in increments of ae.R9_step. ae.R9_step
specifies the duration in row-times equal to one flicker period. The AE driver sets inte-
gration time as an integer multiple of ae.R9_step (integration time, in rows = ae.R9_step
* ae.Index) and these multiples are labeled “index.” Adjusting the parameters:
ae.IndexTH23 and ae.maxIndex control the relationships between integration time and
gain used to achieve the luminance targets. Refer to the specification sheet for a more
detailed diagram of the relationships between shutter width and gain. (If the AE index
control variables are changed, the sequencer command “Do Refresh” (seq.cmd=5) must
be called to activate the new settings.)

How to Use Manual Exposure and Manual Gain
If the AE driver is active (seq.mode[0] = 1), then the user cannot change some of the reg-
isters related to auto exposure (e.g., R9:0–shutter width, R12:0–shutter delay, R43–47:0–
analog gains, R78:1,R106–110:1–digital gains, etc.) because the AE driver continuously
overwrites them. The user can manually set the AE parameters in two configurations:

1. Disable the microcontroller (see “Using the Test Patterns” on page 132). Once dis-
abled, the sensor and image processing registers may be set without being overwrit-
ten by the firmware.

2. Disable the AE driver (set to manual mode in the sequencer states), and change the
AE driver's variables to affect the exposure time and the gain (see ae.R9, ae.VirtGain,
ae.DGainAE1, ae.DGainAE2).
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 48 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Exposure FAQs

Micron Confidential and Proprietary Advance
Auto Exposure FAQs
• To implement EV shift, the target exposure must be changed, is there a register to set

for over or under exposure?
• Can we use single AE measurement window, whose size could be freely programmed?
• Manual exposure time & ISO setting. Is it possible to override the auto exposure and

set the integration time and analog gain manually?
• Can we lock integration time and analog gain to their current values? Can we read the

values of the integration time and analog gain from the sensor and set them manually
afterwards?

To implement EV shift, the target exposure must be changed, is there a register to set
for over or under exposure? There is a variable named ae.target under the AE driver
(ID=2) for the customer to modify. Here is a description from the data sheet that
explains how the MCU variables are accessed:

Microcontroller variables are similar to two-wire serial interface registers, except that
they are located in MCU memory. Variables are accessed by specifying their address in
R198:1 and reading/writing the value to R200:1. Variables can be accessed as 8-bit (byte)
and 16-bit (word) at a time. Variable address can be specified as physical or logical. Use
logical address to configure driver variables. A logical address consists of a driver ID (0 =
monitor, 1 = sequencer, etc.) and an offset into the driver data structure.

Can we use single AE measurement window, whose size could be freely pro-
grammed? Yes, you can use one window (read register which specifies average luma in
this window and use it as current luma. Or average all 16 windows and consider it as one
big window). This is the way how AE works in preview mode. You program size and posi-
tion for Top/Left window, another window positions are calculated automatically mak-
ing grid 4 x 4.

Manual exposure time & ISO setting. Is it possible to override the auto exposure and
set the integration time and analog gain manually? By disabling AE and AWB, integra-
tion time and analog gains will be frozen, then they can be modified.

Can we lock integration time and analog gain to their current values? Can we read the
values of the integration time and analog gain from the sensor and set them manually
afterwards? By disabling the AE and AWB the integration time and analog gains will be
frozen and can then be read and written to manually in the sensor core.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_1.fm - Rev. A 6/05 EN 49 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Flicker Avoidance

Micron Confidential and Proprietary Advance
Flicker Avoidance

Background
Most low-power fluorescent lights flicker quickly on and off to reduce power consump-
tion. While this fast flickering is marginally detectable by the human eye, it is very
noticeable in digital images. This is because the flicker period of the light source is very
close to the range of digital images’ exposure times.

Many CMOS sensors use a “rolling shutter” readout mechanism that greatly improves
sensor data readout times. This allows pixel data to be read out much sooner than other
methods that wait until the entire exposure is complete before reading out the first pixel
data. The rolling shutter mechanism exposes a range of pixel rows at a time. This range
of exposed pixels starts at the top of the image and then “rolls” down to the bottom dur-
ing the exposure period of the frame. As each pixel row completes its exposure, it is
ready to be read out. If the light source oscillates (flickers) during this rolling shutter
exposure period, the image appears to have alternating light and dark horizontal bands.

If the sensor uses the traditional snapshot readout mechanism, in which all pixels are
exposed at the same time and then the pixel data is read out, then the image may appear
overexposed or underexposed due to light fluctuations from the flickering light source.

The rate of light flicker is most often either 100Hz or 120Hz; the value is determined by
the adopted power specifications of different nations around the world.

To avoid this flicker effect, the exposure times must be multiples of the light source
flicker periods. For example, in a scene lit by 120Hz lighting, the available exposure
times are 8.3ms, 16.67ms, 25ms, 33.33ms, etc. (The need for an exposure time less than
8.3ms under artificial light is extremely rare.)

The camera designer must first detect whether there is a flickering light source in the
scene, and if so, determine its flickering frequency. In this case, the auto exposure must
limit the integration time to an integer multiple of the light’s flicker period.

By default, the MT9D111 does all of this automatically, ensuring that all exposure times
avoid any noticeable light flicker in the scene. The MT9D111 auto exposure algorithm is
always setting exposure times to be integer multipliers of either 100Hz or 120Hz. The
flicker detection microcontroller driver keeps monitoring the incoming frames to detect
whether the scene's lighting has changed to the other of the two light sources.

How to Use the Flicker Detection Driver
The flicker detection hardware registers are located between 0x7A:1 and 0x7D:1, but
these are merely statistical controls used by the flicker detection driver (ID=4) in the
microcontroller code and their values should not be changed.

The intelligence and adjustability of the flicker detection algorithm resides in the micro-
controller code (ID=4). The flicker detection driver's actions may be controlled by the
sequencer driver (ID=1). For each of the sequencer's programmable states (preview
enter, preview, preview leave, capture; all variables' names end in “.fd”), the flicker
detection driver can be set to off (0), continuous (1), or manual (2).

Upon setting these values, the sequencer must be commanded to refresh the state
parameters by issuing a “refresh mode” command (sequencer.cmd = 6) for the settings
to be reflected in the image stream. Changing the value of the flicker detection's “mode”
variable is not recommended because the sequencer driver, upon the next state change,
will likely overwrite this value.

Off (0) mode completely disables the flicker detection and the auto exposure driver uses
the current value stored in the R9_step as the exposure step size.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 50 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Flicker Avoidance

Micron Confidential and Proprietary Advance
Continuous (1) mode constantly analyzes the image statistics to detect whether the
lighting source has changed from the current frequency to the other frequency. If it
detects the change, it uploads the new flicker period step size to the auto exposure driver
(R9_step) so that all auto exposure times are integer multipliers of this period.

Manual (2) mode disables the automatic analysis of the light source, but allows the user
to alter the flicker detection driver variable “mode” bit 6 to select the light source manu-
ally. Once changed, the new value, at either R9_step50 or R9step60, is uploaded to the
auto exposure driver's R9_step variable.

To set up the flicker detection driver, first know the time required for each sensor line to
read out. Then, calculate how many lines is in a 100Hz flicker period and a 120Hz flicker
period. For example, if the line time is 75µsec, then the 120Hz (for 60Hz lighting sources)
flicker period is 111 lines (1/(120 * 75µsec)).

The resulting values for 50Hz and 60Hz flicker period lines should be uploaded to the
flicker detection driver's R9_step50 and R9_step60 variables, respectively.

Next, calculate the search window for the flicker detection window for each lighting
source. This is the flicker period search range that the flicker detection driver uses (in
units of lines/5) to identify whether flickering is occurring in the scene. For most appli-
cations, the values are simply the flicker period (calculated above) divided by 5, plus or
minus 1. For example, if the flicker period lines were calculated to be 111, then the
flicker search period is from 21 (“f1”) to 23 (“f2”) using the formula: lines/5 +/- 1. These
search period values should be uploaded to the variables search_f1_50, search_f2_50,
search_f1_60, and search_f2_60.

These driver variable settings should be sufficient for reliable flicker detection. However,
if there is a further need to fine tune the algorithm, some additional (advanced) vari-
ables are available for adjustment.

stat_min and stat_max help control the sensitivity of the algorithm to flickering light in a
scene. If the algorithm detects stat_min instances of flickering in stat_max measure-
ments, then the flicker detection driver responds by changing the flickering frequency (if
different than the existing detected frequency). Altering the ratio between the two values
affects the sensitivity of the algorithm and the time required to decide whether to
change the detected light flicker period.

Increasing ae.SkipFrame increases the number of frames that are skipped between each
measurement. However, because the algorithm depends on detecting differences in
light intensity given a constant scene, setting this value too high may allow the camera
user to change the scene framing between flicker detection frames, making this algo-
rithm less effective overall.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 51 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Flicker Avoidance FAQs

Micron Confidential and Proprietary Advance
Flicker Avoidance FAQs
• What are the instructions to enable flicker detection (and presumably suppression)

for the rev 1 MT9D111 samples?

What are the instructions to enable flicker detection (and presumably suppression) for
the rev 1 MT9D111 samples? The flicker detection feature is enabled by default in con-
text A (preview). It is capable of detecting 50Hz and 60Hz frequencies. To turn it on or
off, the following settings can be used:

• ID=1, Offset=2: seq.mode[1] = 1 for flicker detection enable; = 0 to disable

If the above is turned off, upon the REFRESH command , the flicker detection is turned
back on, unless the feature is specifically turned off in each of these states:

• ID=1, Offset=35 : seq.previewParEnter.fd (FD mode in the PreviewEnter state)
• ID=1, Offset=42 : seq.previewPar.fd (FD mode in the Preview state)
• ID=1, Offset=49 : seq.previewParLeave.fd (FD mode in the PreviewLeave state)
• ID=1, Offset=56 : seq.captureParEnter.fd (FD mode in the CaptureEnter state)
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 52 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction

Micron Confidential and Proprietary Advance
Color Correction

Auto White Balance
In order to achieve good color rendition and color saturation, interpolated colors of all
pixels are subjected to color correction. The color correction is a linear transformation
of the image with a 3 x 3 color correction matrix. The optimal values of the correction
matrix elements depend on the spectrum of light incident on the sensor. They can be
either programmed by the user or automatically selected by the auto white balance
(AWB) algorithm.

The AWB algorithm is designed to compensate the effects of the changing spectra of the
scene illumination on the quality of the color rendition. This sophisticated algorithm
consists of two major parts:

• a measurement engine performing statistical analysis of the image (R48–50:1)
• and a firmware driver performing the selection of the optimal color correction matrix,

digital, and analog gains
The driver keeps the values for the analog gain ratio of two matrices corresponding to
two opposite illuminations red-rich (incandescent) and blue-rich (daylight). The vari-
ables awb.ccmL[0]–awb.ccmL[10] keep the values for left (incandescent) matrix. The
variables awb.ccmRL[0]–awb.ccmRL[10] keep the difference between the right (day-
light) and the left matrices. The AWB driver analyzes the measurement engine data and
sets appropriate digital AWB gains (awb.GainR, awb.GainG, awb.GainB) and the matrix
position (awb.CCMposition). The matrix position defines current matrix coefficients
and the analog gain ratio (awb.ccm array).

(EQ 1)

(EQ 2)

How to Change the Color Saturation
The variable awb.saturation defines the color saturation. awb.saturation = 128 corre-
sponds to 100 percent of saturation when awb.ccm is calculated in EQ 1. awb.saturation
= 0 corresponds to unit matrix. Any other value of awb.saturation corresponds to a
matrix which is a linear interpolation between 100 percent saturation and the unit CCM.

To set a 30-percent saturated matrix:

• enable AWB seq.mode[2]=1
• set awb.saturation = 30 * (128 / 100) = 38

Awb.ccm[i] awb.ccmL awb.ccmRL x awb.CCMposition
127

--⎝ ⎠
⎛ ⎞+=

Total WB gain Red Gain (R45:0)
GlobalGain (R47:0)
--xawb.GainR=
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 53 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction

Micron Confidential and Proprietary Advance
How to Speed Up/Slow Down AWB
Two variables are responsible for the AWB speed:

1. awb.GainBufferSpeed—Speed of the AWB digital gains buffering (32 = fastest, 1 =
slowest)

2. awb.JumpDivisor—specifies how much the AWB parameters (gains, CCM, etc.) are
traversed in one jump (1 = whole way, 2 = half way, 3 = 1/3rd of the way, and so on)

The smaller the number the faster AWB (1 is minimal number). The sequencer controls
the AWB speed in every state by these variables:

• seq.sharedParams.awbContBuff
• seq.sharedParams.awbContStep
• seq.sharedParams.awbFastBuff
• seq.sharedParams.awbFastStep
For example, to make the AWB as fast as possible on “Leave Preview,” set the fastest
parameters for fast AWB mode:

1. seq.sharedParams.awbFastBuff=32
2. seq.sharedParams.awbFastStep=1
Then select the fast AWB mode for the “Leave Preview” state.

3. seq.previewParLeave.awb=1

How to use a Static CCM
There are two ways to use a static CCM:

1. Use default matrices
 a. turn AWB On

i. seq.mode[2]=1
 b. set digital WB gain to 1

ii. awb.mode[5]=1
 c. set WB position to select the desired CCM.

iii.awb.CCMposition=0 corresponds incandescent CCM
iv. awb.CCMposition=127 corresponds daylight CCM

 d. CCMPosition is decided from B/G
If awb.GainB is outside the range of SteadyBGainOutMin and SteadyBGainOut-
Max, the CCMPosition would be changed, and analog gain is adjusted. CCMPo-
sition keeps adjusting until awb.GainB is in range of SteadyBGainInMin and
SteadyBGainInMax. If CCM Position reaches one end, but AWB is not satisfied,
digital gains would be increased/decreased until it reaches GainMax/GainMin.

2. Download user defined CCM
 a. turn AWB On

i. seq.mode[2]=1;
 b. set digital WB gain to 1

ii. awb.mode[5]=1
 c. write coefficients of new CCM into variables awb.ccmL[0] – awb.ccmL[10] (256

corresponds to 1.0)
iii.awb.ccmL[0] = CCM11*256
iv. awb.ccmL[1] = CCM12*256

. . .

v. awb.ccmL[8] = CCM33*256
vi. awb.ccmL[9] = RedAnalogGain/GreenAnalogGain *32
vii.awb.ccmL[10] = BlueAnalogGain/GreenAnalogGain *32
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 54 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction

Micron Confidential and Proprietary Advance
 d. set variables awb.ccmRL[0] – awb.ccmRL[10] to 0
viii.awb.ccmRL[0] = 0

. . .

ix. awb.ccmRL[10] = 0

How to Perform Color Calibration
1. Setup
Hardware

 a. Make sure the lens and sensor module are completely shielded from external
light entering the module from the side. If needed, shield the lens module from
external light using black tape.

 b. Place the color rendition chart in the middle of the image screen to avoid corner
color shading effect to the chart. Make sure the entire chart is in the image
screen.

 c. Turn on one of the light source (Blue Daylight at 6500 Kelvin or Red Incandes-
cent light at 2850 Kelvin). For the procedure described below, we show the cali-
bration for Blue Daylight first, then ask the user to repeat the process for Red
light.

Software

 d. Start up DevWare version 2.6 Beta 5 (or above) and camera module
 e. Do not load Register Default settings upon starting the software
2. Preset and Load

 a. Select “Color Calibration Setup” in Preset window and click on “Load”—this
loads all relevant register setting that are needed to perform the tuning in
DevWare.

 b. Select “Lens Correction” to load the settings for lens calibration. The user
should calibrate the lens before calibrating color. For procedure on lens calibra-
tion, see “Lens Shading and Correction” on page 33.

3. Calibration in DevWare
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 55 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction

Micron Confidential and Proprietary Advance
 a. Open the Cumulative Intensity Graph and adjust the shutter width so the Green
in white patch is at 220

Since the light hits vertically from top, select the ROW line which comes across the top of the
white color square. Thus, the maximum Green needed for white balance can be obtained.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 56 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction

Micron Confidential and Proprietary Advance
The region of white has the greatest Green
value (for red light, red component has the
greatest value)

Adjust “Shutter Width” register
values so the maximum Green
in the intensity graph reaches

“220,” as shown in the graph above.

Adjust the “Shutter Width”
register by changing the

from left to right to approx-
imate values.

binary bits of gain. Start
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 57 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction

Micron Confidential and Proprietary Advance
 b. Adjust the Red and Blue Gain, so that the curves overlaps each other approxi-
mately (start from Red gain and then Blue gain)

Start from adjusting
Red gain and move to
Blue gain. (Green gain
should not be adjusted
it should be the
default 0x0020).

For red light, start
from adjusting
blue gain. Green gain
should not be adjusted
(0x0020). If Red is
higher than Green, then
lower Red gain so it
overlaps with Green.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 58 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction

Micron Confidential and Proprietary Advance
 c. Capture the picture and save it. The naming convention is important here. The
image should be named as: Module ID _ Light Condition and Red Gain _ Green
Gain _ Blue Gain. For the light condition field, the user should enter “D” for D65
light and “A” for A28 light. For example, in the GUI below, we show capturing an

Adjust so that the RGB values
overlap each other
approximately
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 59 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction

Micron Confidential and Proprietary Advance
image taken by the Largan module with D65 and Red Gain = 48, Green Gain = 32,
and Blue Gain = 36. This example is explained throughout this document

 d. With all settings staying the same, take away the Color Rendition Chart from the
light box and take an image of the background. Capture this image and save it as
“Largan_D48_32_36_bk”. Note the “_bk” stands for background

 e. Repeat Step 3 (Calibration in DevWare) for incandescent light and save the color
chart picture and the background picture as a different file name

Do not save as RAW data

Do not select Auto
File Name Increment
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 60 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction

Micron Confidential and Proprietary Advance
4. Calibration of Color Correction Matrix

 a. Load the 'D_48_32_36.bmp' as the “Right” Picture. Note that
'D_48_32_36_bk.bmp' is loaded automatically as the background picture

 b. Load the calibration target (it is located in C:\Program Files\Micron Imag-
ing\cccm). The target is called DAY.cal for D65 lighting and A.cal for A28 lighting

 c. Manipulate and adjust so that the Matrix dots are approximately located at the
middle of each color square. If the GainR is less than 1,000 for Incandescent

Make sure Daylight picture is for the Right matrix
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 61 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction

Micron Confidential and Proprietary Advance
Light, change the number to 1,000; then go to the Color Calibration and Select
Calibrate

 d. Save the calibrated Daylight picture as a Matrix data file

Select Calibrate

Try to place the matrix
dots at the center
of the color squares

These gain ratios
are automatically
loaded when the
picture is loaded.

GainR = 1000*(Red
Gain/Green Gain)

GainG = 1000*(Green
Gain/Green Gain)

GainB = 1000*(Blue
Gain/Green Gain)
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 62 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction

Micron Confidential and Proprietary Advance
 e. After Calibrated the picture, repeat steps [a]–[d]. loading the Incandescent light
picture as the “Left (Base)” Matrix

 f. After both pictures have been calibrated and the corresponding matrix data file
has been saved, save a combine .ini file

Load the A-32_32_56 Picture
for “Left (Base)” Matrix

This is the ini file
which is appended
to the end of the
main .INI code.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 63 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction

Micron Confidential and Proprietary Advance
5. Verification
 a. Hardware setup is the same as described above
 b. Load DevWare and reset all registers (this enables AWB, Color Correction, AE,

and Gamma Correction)
 c. Load the Lens Correction, then load CCCM setting in the Preset window

 d. Go to Plug-ins --> Color-char Overlay v1.4. Make sure the patches are right on
top of the color bars in the image. If not, adjust X-Size and Y-Size to have the
patches positioned

 e. The Delta-E parameter on Color-Chat Overlay V1.4 should be no more than 8.0

 f. If needed, repeat the color correction procedure to obtain improved register set-
ting values and repeat the verification process to check image quality
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 64 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction

Micron Confidential and Proprietary Advance
Related Register List
REG=1, 0x60 //COLOR_CORR_MATRIX_SCALE_14

REG=1, 0x61 //COLOR_CORR_MATRIX_SCALE_11

REG=1, 0x62 //COLOR_CORR_MATRIX_1_2

REG=1, 0x63 //COLOR_CORR_MATRIX_3_4

REG=1, 0x64 //COLOR_CORR_MATRIX_5_6

REG=1, 0x65 //COLOR_CORR_MATRIX_7_8

REG=1, 0x66 //COLOR_CORR_MATRIX_9

REG=1, 0x6A //DIGITAL_GAIN_1_RED

REG=1, 0x6B //DIGITAL_GAIN_1_GREEN1

REG=1, 0x6C //DIGITAL_GAIN_1_GREEN2

REG=1, 0x6D //DIGITAL_GAIN_1_BLUE
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 65 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Color Correction FAQs

Micron Confidential and Proprietary Advance
Color Correction FAQs
• How can I load a new Color Correction Matrix?

How can I load a new Color Correction Matrix? The CCM can be loaded using the AWB
driver (ID=3). The offsets for the left (A) and right (daylight) CCMs and gain ratios are as
follows:

• ID=3, Offset=6-26 (ccmL) contains the CCM values and gain ratios for the red-light
(left color correction matrix)

• ID=3, Offset=28-48 (ccmRL) contains the detla values between the left and right
matrices

The AWB driver will automatically adjust the current CCM values (ID=3, Offset=50–70)
to the proper values based on the two extreme cases above.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 66 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Auto Focus Driver

Background
This section details the auto focus (AF) drivers included in the firmware of the MT9D111
image sensor. These drivers encapsulate all firmware code developed to date by Micron
to support AF function in cameras built around the sensors.

Figure 29: Block Diagram of a Basic AF Camera Built Around the MT9D111 Image Sensor

Note: A block diagram of a basic AF camera built around the MT9D111 image sensor. It shows
system components essential for auto focusing and interactions between them.

Scan Auto Focus Algorithm

Algorithm Description
The AF algorithm implemented in the MT9D111 seeks to maximize sharpness of vertical
lines in the sensor's image output by guiding an external lens actuator to the position of
best lens focus. The algorithm's implementation has a hardware component called
focus measurement engine (FME) and a firmware component called AF driver. The algo-
rithm is lens-actuator-independent: it provides guidance by means of an abstract 8-bit
variable called logical lens position, leaving the translation of its changes into physical
lens movements to a separate auto focus mechanics (AFM) driver. The AF algorithm
relies on the AFM driver and the GPIO to generate digital output signals needed to move
different lens actuators. The AFM driver must also correctly indicate at all times if the
lens it controls is stationary or moving. This is required to prevent the AF driver from
using line sharpness measurements distorted by concurrent lens motion and from issu-
ing new commands to move the lens while previous one is still being executed.

Line sharpness measurements are performed continuously (in every frame) by the FME,
which is a programmable edge-filtering module in image flow processor (IFP). The FME
convolves two preprogrammed 1-dimensional digital filters with luminance (Y) data it
receives row-by-row from the color interpolation module. In every interpolated image,
the pixels whose Y values are used in the convolution form a rectangular block that can
be arbitrarily positioned and sized, and then divided into up to 16 equal-sized sub-
blocks, referred to as AF windows or zones. The absolute values of convolution results
are summed separately for each filter over each of the AF windows, yielding up to 32
sums per frame. As soon as these sums or raw sharpness scores are computed, they are

CAMERA
 LENS

Sensor
Core

General
Purpose

I/O
Module
(GPIO)

IFP

Focus
Measurement

Engine

Sharp-
ness

Scores

Micro-
Controller

with Firmware

Image
Data

Reg. R/W

 Light

Feedback Lens Actuator

Driver
ASIC

Driving Signals
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 67 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
put in dedicated IFP registers, as are Y averages from all the AF windows. The AF driver
reduces these data to one normalized sharpness score per AF window, by calculating for
each window the ratio (S1 + S2)/<Y>, where <Y> is the average Y and S1 and S2 are the raw
sharpness scores from the 2 filters multiplied by 128. Programming of the filters into the
MT9D111 includes specifying their relative weights, so each ratio can be called a
weighted average of two equally normalized sharpness scores from the same AF win-
dow. In addition to unequal weighting of the filters, the AF driver permits unequal
weighting of the windows, but window weights are not included in the normalized
sharpness scores. Reasons for this are detailed below.

There are several motion sequences through which the AF driver can bring a lens to best
focus position. An example sequence is depicted in Figure 30. All these sequences begin
with a jump to a preselected start position, e.g. the infinity focus position. This jump is
referred to as the first flyback. It is followed by a unidirectional series of steps that puts
the lens at up to 19 preselected positions different from the start position. This series of
steps is called the first scan.

Before and during this scan, the lens remains at each preselected position long enough
for the AF driver to obtain valid sharpness scores. Typically, the time needed is no longer
than 1 frame, but there is an option to skip 1 frame before the AF driver grabs the scores,
which means that the total time spent at each position can reach 2 frames. The timing of
lens movements between the preselected positions is lens-actuator-dependent and not
controlled by the AF driver. Though the AF driver gives commands to move the lens, it is
the AFM driver that takes care of the execution and determines how soon after each
command the AF driver gets a signal to proceed. All inclined sections of the lens position
(plots in Figure 30) are therefore of unknown duration—unless the discussion on the AF
is narrowed to a specific use case.

Lens Movements and Focus
Figure 30 illustrates lens movements during a dual/triple-flyback auto focusing
sequence. The sequence is an example only; it can be changed in a number of ways. Sec-
ond scan, as well as second and third flyback, are optional—final lens positioning can be
a direct jump from last position tried in a scan to best focus position. Number of steps in
each scan, lens positions stepped through during the first scan, and step size in the sec-
ond scan are all individually programmable.

Figure 30: Search for Best Focus

Lens
Position

P = 255

P = 0

1st scan: the lens steps
through its motion range,
sharpness scores are acquired
after each step.

Final lens positioning
(if no 2nd scan)

Final lens positioning
(after 2nd scan)

1st flyback 2nd flyback
2nd scan
(optional)

3rd
 flyback

Time

Best
focus

position
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 68 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
The first normalized score from each AF window, acquired at the start position, is stored
as both the worst (minimum) and best (maximum) score for that window. These two
extreme scores are then updated as the lens moves to subsequent positions and a new
maximum position is memorized at every update of the maximum score. In effect, the
preselected set of lens positions is scanned for maxima of the normalized sharpness
scores, while information needed to validate each maximum is being collected. This
information is in the difference between the maximum and the minimum of the same
score. A small difference in their values indicates that the score is not sensitive to the
lens position; therefore, its observed extrema are likely determined by random noise. On
the other hand, if the score varies greatly with the lens position, its maximum is much
more likely to be valid—close to the true sharpness maximum for the corresponding AF
window. Due to these considerations, the AF driver ignores the maxima of all sharpness
scores whose peak-to-trough variation is below a preset percentage threshold. The
remaining maxima, if any, are sorted by position and used to build a weight histogram of
the scanned positions. The histogram is build by assigning to each position the sum of
weights of all AF windows whose normalized sharpness scores peaked at that position.
The position with the highest weight in the histogram is then selected as the best lens
position.

This method of selecting the best position may be compared to voting. The voting enti-
ties are the AF windows, that is, different image zones. Depending on the imaged scene,
they may all look sharp at the same lens position or at different ones. If all the zones
have equal weight, the lens position at which a simple majority of them looks sharp is
voted the best. If the weights of the zones are unequal, it means that making some zones
look sharp is more important than maximizing the entire sharp-looking area in the
image. If there are no valid votes, because sharpness scores from all the AF windows vary
too little with the lens position, the AF driver arbitrarily chooses the start position as the
best.

Figure 31, Figure 32, and Figure 33 illustrate selection of the best lens position when
there are several objects in imaged scene to focus on, each at a different distance from
the lens. Each lens position bringing one or more of these objects into sharp focus
within the AF window grid can be potentially voted the best. The actual result of the vote
is determined by the extent and texture of each object and the weights of the overlying
AF windows.

What happens after the first scan and ensuing selection of best position is user-pro-
grammable—the AF algorithm contains a number of ways to proceed with final lens
positioning. The selection made should be the one that best fits the magnitude of lens
actuator hysteresis and desired lens proximity to the truly optimal position. Actuators
with large, unknown or variable hysteresis should do a second flyback—jump back to
the start position of the first scan, and then either retrace the steps made during the scan
or directly jump to the best of the scanned positions. Actuators with constant hysteresis
(like gear backlash) can be moved to that position directly from the end position of the
scan—the AF algorithm offers an option to automatically increase the length of this
move by a preprogrammed backlash-compensating step. Finally, if the first scan is
coarse, relative to the positioning precision of the lens actuator and depth of field of the
lens, an optional second fine scan can be performed around the lens position selected as
best after the first scan.

The second scan is done in the same way as the first, except that the positions it covers
are not preset. Instead, the AF algorithm user must preset step size and number of steps
for the second scan and enable its execution by setting the appropriate control bit in one
of AF driver variables. Finding this bit equal to “1” at the end of the first scan, the AF
driver calculates lens positions to be tried in the second scan from its two user-set
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 69 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
parameters and the position found best in the first scan. The calculation takes into
account where that position is, relative to the limits of the lens motion range and how it
would be reached if the second scan were not enabled.

If the user-selected way to reach it includes the second flyback, the AF driver assumes
that the start position of the second scan must likewise be reached not directly from end
position of the first scan, but via logical position 0, the default start position of that scan.
An extra zero is therefore put at the beginning of the list of positions calculated for the
second scan—unless this list already starts with logical position 0. If the second flyback
is not enabled, no extra zero is prepended to the list. In every case, the list is then
appended to the list of positions already scanned in the first scan. The combined list
cannot have more than 20 entries, due to fixed 20-byte size of memory buffer used by
the AF driver to store lens positions. This means that the first scan of, say, 15 positions
can be followed by a flyback to 0 and second scan of no more than 4 non-zero positions
or, alternatively, a second scan of up to 5 non-zero positions if the second flyback is not
enabled. In both cases, the two unidirectional scans can be also seen as a single scan
with two changes of direction. If the lens actuator has significant hysteresis, the effect of
those changes should be carefully considered. The only way to alleviate it is to do the fly-
back to 0 prior to the second change.

The second scan is always followed by the user-selected final positioning sequence that
in the absence of the second scan would follow the first scan—a flyback to the start posi-
tion of the latter and a jump to the position found best in the former.

Focus Targets at Different Distances
Figure 31 depicts a simple scene with two potential focus targets: a business card in
front and a picture of a cat far in the background. Distances in the diagram are not to
scale. Red and yellow rectangles in the middle of the image represent 16 AF windows,
each of which yields a separate Y-normalized sharpness score. Sharpness scores from
the lower 8 windows are highest when the business card is in focus, which happens
when the lens is at position 5. Scores from the upper 8 windows peak when the lens is at
position 0.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 70 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Figure 31: Scene with Two Potential Focus Targets at Different Distances From Camera

Luminance-Normalized Local Sharpness
Luminance-normalized sharpness scores from AF windows W12, W13, W32, W42, and
W43 are reflected in Figure 32. Lens position 0 is the position of best focus for windows
W12 and W13, while windows W42 and W43 are in sharpest focus at lens position 5. The
relatively featureless window W32 is in sharpest focus at the same position, but it is diffi-
cult to determine this from its sharpness score, which varies very little with lens posi-
tion.

Figure 32: Dependence of Luminance-Normalized Local Sharpness Scores on Lens Position

0 1 2 3 4 5 6 7 8 9

IMAGE
SENSOR

BUSINESS
CARD

CAT
PICTURE

LENS

OPTICAL AXIS

LENS
POS. # :

W24

W14

W23

W13

W22

W12

W21

W11

W44

W34

W43

W33

W42

W32

W41

W31

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9

Lens Position Number

N
o

rm
al

iz
ed

 S
h

ar
p

n
es

s
Sc

o
re

W12
W13
W32
W42
W43
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 71 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Position Weight Histogram Created by AF Driver
Figure 33 shows a position weight histogram created by AF driver to select best lens
position. This histogram corresponds to the situation depicted in Figure 32 and
Figure 33 . After scanning ten lens positions numbered from zero through nine, the AF
driver determined that Y-normalized sharpness scores from the upper 8 of 16 AF win-
dows (W11 through W24) peak at lens position 0, while the scores from the lower 8 win-
dows (W31 through W44) at lens position 5.

For each of the two positions, the AF driver summed preprogrammed weights of the AF
windows being clearly in focus at that position, thus obtaining two position weights.
These weights would have been equal except for very weak dependence of sharpness
scores from windows W31, W32, and W33 on lens position.

Finding peak-to-trough variability of these scores lower than preprogrammed thresh-
old, the AF driver concluded that for W31, W32, and W33, no lens position was clearly
optimal, and therefore the weights of these windows should not be added to the weight
of position 5. This gave position 0 a higher weight and decided its selection as the best
position. Note unequal weighting of the AF windows, increasing the importance to the 4
central ones.

Figure 33: Example of Position Weight Histogram Created by AF Driver

Evaluation of Image Sharpness
Information on image sharpness that the AF algorithm uses to find best focus position is
provided by focus measurement engine (FME), a programmable edge-filtering module
in IFP. The FME convolves two preprogrammed 1-dimensional digital filters with lumi-
nance (Y) data that it receives row by row from the color interpolation module. For each
interpolated frame, the convolution of the AF filters with Y produces up to 32 local
sharpness scores reflecting the density and sharpness of vertical edges in up to 16 user-
selected areas of the frame. The FME outputs these sharpness scores once every frame
to IFP registers R[77:84]:2.and R[87:94]:2 (where “[:]” denotes a range of register num-

0 1 2 3 4 5 6 7 8 9

Weight

Lens Position Number

W21

W14

W13

W24

W12

W11

W22

W23

W41

W44

W43

W42

W34

W32

W31

W33

Three AF windows excluded

from histogram because of very

low variability of their sharpness

scores with lens position

3

2

1

0

PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 72 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
bers and “:2” means page 2). In addition, the FME calculates and writes to IFP registers
R[67:74]:2 up to 16 local averages of Y that can be used to normalize the sharpness scores
and thus make them nearly independent of scene brightness.

Since each sharpness score and Y average has only 8 register bits allocated for it, care
should be taken in programming the AF filters to ensure that the sharpness scores they
produce never exceed 255. Otherwise, the content of registers R[77:84]:2.and R[87:94]:2
may not match actual sharpness scores computed by the FME.

The exact method of computing the sharpness scores is as follows. Sixteen equal-sized
rectangular windows forming a 4 x 4 grid are superimposed on each color-interpolated
frame. The size of these AF windows and the position of the upper-left corner of the grid
are programmable (via IFP registers [R64:66]:2). The grid does not have to be entirely
inside the frame.

For example, it is perfectly legal to cover most of the frame with a 3 x 3 portion of the grid
and place the remaining 7 AF windows almost entirely outside of it, as shown in
Figure 34. Whenever a portion of an AF window is inside the frame, the FME calculates
two sharpness scores and averages Y for this portion. However, it can write these results
to registers only if the bottom boundary of the window is partly or fully inside the frame.
Placing this boundary entirely outside the frame makes the window inactive, in the
sense that the FME stops the output of new sharpness scores and Y averages for it.
Although no AF window having some part of the bottom boundary inside the frame can
be deactivated in the same sense, any AF window can be made irrelevant in the AF algo-
rithm by giving it a weight of zero.

Each frame is read out from the sensor core and processed by the IFP row by row. Every
rectangular block of pixels in the frame can be considered as a separate, smaller frame,
also read out and processed row by row. A portion of a frame row belonging to any AF
window will be referred to as a window row. As the color interpolation module processes
each window row and makes Y values of its successive pixels available to the FME, the
FME convolves those values with the two AF filters.

The AF filters are user-programmable within the following constraints: each can have 8
or 9 integer coefficients with values from -15 through 15, can be symmetric or antisym-
metric, and can be multiplied by a power-of-2 weight factor ranging from 1/512 to 32. By
default, both are programmed to detect sharp edges, but the first filter is more high-pass
than the second. Each filter is applied to successive locations in a window row, starting
at the first pixel and ending at the last. This requires using Y values from outside the win-
dow, specifically from the 4 columns to the left and 4 columns to the right of the win-
dow. Hence, when programming the size and position of the AF window grid, one
should make sure that every AF window intended to have non-zero weight is at least 4
columns away from the left and right side of the frame.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 73 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Auto Focus WIndows
Figure 34 shows an array of 16 equal-sized AF windows configured to work like a cen-
tered quincunx pattern of 5 windows.

Figure 34: Auto Focus WIndows

As the convolution of each AF filter with Y progresses along a window row, then to the
next row, and so on, absolute values of its successive results are added to a sum that ulti-
mately becomes a sum over the whole portion of the window located inside the frame.
At the same time, the pixels in the window are counted and their Y values are added up
to get the average Y for the window.

In this way, schematically depicted in Figure 35, each AF window not located fully out-
side the frame yields two sharpness scores (the sums of convolution results from the two
AF filters) and 1 average Y. The number of window rows processed to obtain these
results can be equal to or less than the common AF window height programmed into the
register R65:2.

If the window row count matches that height, the results are output to registers. This
never happens for AF windows positioned like W41 or W44 in Figure 34—hence, these
windows are inactive. Results from each active AF window are output immediately after
its last row is processed.

W11 W12 W13 W14

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44

Used active window (programmable weight > 0)

Unused active window (programmable weight = 0)

Inactive window (partly outside the frame, no sharpness score calculated)

FRAME

h

w

 Programmable (x,y)

Programmable
window size (w,h)
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 74 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Figure 35: Computation of Sharpness Scores and Luminance Average for AN AF Window

Notes: 1. This figure shows the computation of sharpness scores, S1 and S2, and average luminance,
<Y>, in an AF window.

2. Coefficients of each of the two AF filters are independently programmable. The filters
shown here as an example yield convolution results:
F1 = 2Y2-8Y3+12Y4-8Y5+2Y6 and F2 = 2Y0-8Y2+12Y4-8Y6+2Y8.

The symmetry constraint placed on the AF filters reduces the number of coefficient val-
ues needed to define them. Symmetric 8- or 9-coefficient filters are defined by specify-
ing 4 or 5 coefficient values, respectively. Only four coefficients are needed to define an
8- or 9-coefficient antisymmetric filter. Examples of AF filters that can be programmed
into the MT9D111 are given in Table 11. To program the first AF filter, write its parame-
ters to IFP registers R75:2 and R76:2. The parameters of the second AF filter must be
written to IFP registers R85:2 and R86:2.

Table 11: Possible AF Filters

Filter Parameters Programmed into Registers

Filter Size Filter Symmetry

Filter Coefficients
Filter

Weight FilterC0 C1 C2 C3 C4

8 Symmetric n/a 6 -7 2 0 1 [0 2 -7 6 6 -7 2 0]
8 Antisymmetric n/a 1 0 0 0 1/4 [0 0 0 -1/4 1/4 0 0 0]
9 Symmetric 6 0 -4 0 1 2 [2 0 -8 0 12 0 -8 0 2]
9 Antisymmetric 0 15 5 0 0 1/8 [0 0 -5/8 -15/8 0 15/8 5/8 0

0]

ROW R+1

 0 0 2 -8 12 -8 2 0 0
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 …

ROW R-1AF FILTER 1:

 AF FILTER 2:
PIXEL Y DATA:

 IFP REGISTERS

|F1|

 |F2|

AF WINDOW

ROW R

ROW R-2

ROW R+2
 2 0 -8 0 12 0 -8 0 2

Pixels in
Window

S1= |F1|

Pixels in
Window

<Y>
S2= |F2|

Pixels in
Window

NPixels in
 Window

Y

PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 75 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Algorithm Flowchart
When configured to do a single scan, the scan AF algorithm searches for best focus posi-
tion according to the flowchart in Figure 36 and Figure 37.

Figure 36: Flowchart of Scan AF Algorithm Implemented in the MT9D111

 START AF.
Set scan step number i =
0.

Wait for the lens to move and for the focus measurement module to process one frame.

No

Read from IFP registers 2 sharpness scores and average Y
corresponding to one active AF window. Add the 2 sharpness scores
and divide the sum by the average Y to get a single Y-normalized
sharpness score.

Make max score = new score.
Memorize the current lens position
as the best one for the window
under consideration.

 Compare this new score to the max and min score for the same window.

New score > max score?

Yes

New score < min score?

Yes

Make min score = new
score.

No

Look for next active AF window.

Next page

Yes
Found another?

No

Yes

Increment the scan step number: i = i + 1.

Send a command to move the lens to preprogrammed position P[i].

i <= NumScanSteps ?

No
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 76 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Figure 37: Flowchart of Scan AF Algorithm Implemented in the MT9D111

Send command to move the lens back to P[0].

Send command to move the lens to P[imax].

Wait for the lens to move to P[0].

Yes

Report: AF done.
END AF

 Yes
For all relevant AF windows, is

max score – min score < threshold ?

No

 imax = 0 ?

For i = 0, 1, 2..., NumScanSteps, sum the weights of AF windows whose sharpness
scores peaked at lens position P[i]. Find for which i the sum is the largest and
memorize this i as imax. The position P[imax] is the best focus position.

No

Wait for the lens to move to
P[imax].

Report error: Unable to focus.
Set imax = 0.

 imax = NumScanSteps ?

No

Yes

2nd flyback enabled?

Yes

No
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 77 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Creep Compensation
In addition to an implementation of the flowchart given in the previous section, the AF
driver includes a function whose task is to return an AF lens to previously found best
focus position if the lens actuator is unable to keep it there over long periods of time (e.g.
over a 30-second focus lock period). According to external sources and tests carried out
at Micron, helimorph actuators exhibit this problem, referred to as position creep. Creep
compensation currently implemented in the AF driver would be more accurately called
brute force re-positioning: to make the lens actuator “forget” the position creep, the lens
is moved from its current logical position, afm.curPos, to af.positions[0] and then back.
If afm.curPos equals 0, which is the default value of af.positions[0], af.positions[af.num-
Steps-1] is chosen instead as the destination of the first move. The creep compensation
function is enabled by switching the AF driver to creep compensation mode, i.e. by set-
ting bits 6 and 7 of af.mode to 1 and 0, respectively. The creep compensation function
does not move the lens as long as bits [5:0] of af.mode all equal 0. To correctly trigger
lens re-positioning in the creep compensation mode, one must set bit 0 of af.mode to 1.

Public Variables of AF Driver
Public variables of the AF driver listed in Table 12 and register settings defining the AF
filters are all the parameters that one needs to pay attention to when customizing the
built-in AF algorithm. The AF driver variables include two unsigned characters (bytes)
named af.windowPos and af.windowSize that should be used to adjust position and size
of the AF windows, rather than direct writes to registers R[64:66]:2. It is certainly possible
to access these registers directly, and new values written to them have immediate effect.
However, these values remain in effect only as long as the sequencer driver, the master
firmware driver continuously running on the MT9D111 microcontroller unit (MCU),
does not call AF driver function AF_SetSize (or its user-supplied substitute).

The sequencer calls this function at its initialization, at every change of sensor operation
mode (e.g. from preview mode to capture mode), and also whenever sq.cmd variable is
set to 6 in the preview mode. The function AF_SetSize translates the current settings of
af.windowPos and af.windowSize to corresponding settings of registers R[64:66]:2 and
writes these settings over the previous values of the registers. There is no way to change
the precedence of af.windowPos and af.windowSize over the register settings other than
by overriding the function AF_SetSize.

In addition to programming the registers R[64:66]:2, the function AF_SetSize automati-
cally sets af.wakeUpLine in accordance with af.windowPos and af.windowSize, so that
during every frame readout the AF driver is activated 2 rows below the bottom of the
4 x 4 array of AF windows. If af.windowPos and af.windowSize are such that the bottom
of the array is outside the frame, the value given to af.wakeUpLine by AF_SetSize is
invalid (greater than frame height) and must be changed to something less than the
frame height, otherwise AF will not work.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 78 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Table 12: Public Variables of the Auto Focus Driver

Off Name Type Default RW Description

0 Vmt void* 0xE9D2 RW Pointer to virtual method table (VMT)
2 windowPos uchar 0x44 RW Position of the upper left corner of the first AF window (W11):

Bits [3:0]—x coordinate (horizontal offset from the upper left corner of
the frame) in units of 1/16th of frame width,
Bits [7:4]—y coordinate (vertical offset from the upper left corner of
the frame) in units of 1/16th of frame height.
New position written to this variable takes effect after
REFRESH_MODE command is given to the sequencer driver (sq.cmd is
set to 6).

3 windowSize uchar 0x77 RW Dimensions of the 4 x 4 array of AF windows:
Bits [3:0]—width (in units of 1/16th of frame width) decremented by 1,
Bits [7:4]—height (in units of 1/16th of frame height) decremented by
1.
New dimensions written to this variable take effect only after
REFRESH_MODE command is given to the sequencer (sq.cmd is set to
6).

4 mode uchar 0 RW Two mode switches and 5 bits reserved for use in default snapshot AF
mode:
Bit 7—manual mode switch (0—manual mode disabled,
1— enabled)
Bit 6—creep compensation mode switch (0—creep compensation
mode disabled, 1—enabled)
Bits [4:0]—reserved for use in snapshot AF mode
If AF is enabled in the Sequencer (sq.mode bit 4 = 1) and manual mode
is disabled (af.mode bit 7 = 0), a snapshot AF sequence can be
triggered at any time by setting af.mode bit 0 to 1. Bits [4:0] are used
in the sequence and automatically cleared at its end.

5 modeEx uchar 128 RW Four option switches and 4 status indicators:
Bit 7—switch enabling the second flyback (jump to the start position of
the first scan) and then jump to best focus position,
Bit 6—switch enabling the second flyback and retracing of scan steps
to best focus position (0—option disabled, 1—enabled),
Bit 5—switch enabling the second scan (0—disabled,
1—enabled),
Bit 4—status indicator, reserved to indicate AF algorithm failure,
currently set to 1 only when auto focusing is attempted while auto
exposure is settling, otherwise cleared at the start of the first flyback
Bit 3—if bit 7 of af.mode equals 0, this bit enables skipping 1 extra
frame after detecting that bit 1 of afm.status has been cleared (i.e.
after the end of every lens movement)
Bit 2—status indicator, set to 1 when the extra frame is being skipped
Bit 1—status indicator, set to 1 when the second scan is in progress
Bit 0—status indicator, set to 1 when sharpness scores are ready.

6 numSteps uchar 10 RW Number of steps (lens positions tried) in the first scan.
7 initPos uchar 0 RW Number (index) of start position, af.positions[af.initPos], used in the

first scan and optional second scan. Must be 0 at the beginning of the
first scan if the second is enabled. Otherwise, can be set before the
first scan to any value below 20-af.numSteps. The AF driver makes
af.initPos equal to af.numSteps at the beginning of the second scan
and equal to 0 at the end of last scan (first or second, whichever is last).
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 79 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
8 numSteps2 uchar 6 RW Bits [3:0]—desired number of steps in second scan (max. allowed
number is 14)
Bits [7:4]—actual number of steps in the second scan (calculated by the
AF driver at the beginning of the scan).

9 stepSize uchar 6 RW Logical step size for the second scan. Because the logical range of
motion is from 0 to 255, af.stepSize=6 means that during the second
scan the AF driver tries to move then lens in increments equal to 6/255
of the length of its entire motion range. However, the lens actuator
may or may not be able to move the lens in steps of precisely that size.
It is important to ascertain that lens movements requested by the AF
driver during the second scan can be at least reasonably approximated
by the lens actuator. The quality of the approximation may depend on
how well the physical limitations of the actuator are accounted for in
the source code and /or configuration of the AFM driver.

10 wakeUpLine uint 448 RW Number of image row at which the MCU wakes up to execute AF
driver code. When the function AF_SetSize resizes the 4 x 4 array of AF
windows according to new values of af.windowPos and
af.windowSize, it automatically makes af.wakeUpLine equal to the
number of the second row below the bottom of the array. If
af.windowPos and af.windowSize are such that the bottom of the
array is outside the frame, the value given to af.wakeUpLine by
AF_SetSize is greater than frame height, i.e. invalid. It must be
changed to some-thing less than the frame height, otherwise AF does
not work.

12 zoneWeights ulong 0xFFFFF
FFF

RW Weights of the AF windows or zones. Bits [1:0] of this variable
represent the weight of window W11, bits [3:2] the weight of W12,
and so on to bits [31:30] that represent the weight of W44. Since each
weight is represented by just 2 bits, it is allowed to have only 4 values,
0, 1/3, 2/3 or 1. Value stored in each 2 bits equals window weight times
3, so the value of 1 signifies the weight of 1/3, 2 stands for 2/3, and 3
for 1.

16 distanceWeight uint 0xFF RW Reserved.

Table 12: Public Variables of the Auto Focus Driver (continued)

Off Name Type Default RW Description
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 80 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
17 bestPosition uchar 0 RW This variable is used in three different ways depending on values of
bits 6 and 7 of af.mode.
When bit 7 equals 1 (in manual lens control mode), the position of AF
lens can be changed by changing the value of af.bestPosition, which is
interpreted by the AF driver as logical lens position desired by its user.
The AF driver reads af.bestPosition once every frame, and if it differs
from current logical lens position (afm.curPos), the AF driver gives the
AFM driver a command to make these variables equal by moving the
lens. Physical movement of the lens corresponding to the change of
afm.curPos to af.bestPosition always takes some time, during which it
is best not to change the value of af.bestPosition to avoid possible
errors.
When af.mode bits [7:6] are both 0, af.bestPosition serves to store AF
algorithm output rather than user input.
After both first and second scan, the AF algorithm outputs to this
variable the offset of programmable logical lens position found to be
best relative to the start position of the scan. In other words, after
each scan, the best lens position found is
af.positions[af.initPos+af.bestPosition].
When af.mode bit 7 is 0 and bit 6 is 1 (creep compensation mode is
enabled) af.bestPosition is used during lens re-positioning triggered by
setting bit 1 of af.mode to 1. It is used to store the desired final lens
position, which is assumed to be the same as afm.curPos before the re-
positioning. As a result after every successful re-positioning,
af.bestPosition equals afm.curPos.

18 shaTH uchar 10 RW Sharpness score variability threshold. Only AF windows whose MIN and
MAX normalized sharpness scores satisfy the condition 1—(min.score/
max.score) = af.shaTH/256 are used to select best focus position.

19 positions[0] uchar 0 RW Programmable logical lens position 0.
20 positions[1] uchar 28 RW Programmable logical lens position 1.
21 positions[2] uchar 56 RW Programmable logical lens position 2.
22 positions[3] uchar 85 RW Programmable logical lens position 3.
23 positions[4] uchar 113 RW Programmable logical lens position 4.
24 positions[5] uchar 141 RW Programmable logical lens position 5.
25 positions[6] uchar 170 RW Programmable logical lens position 6.
26 positions[7] uchar 198 RW Programmable logical lens position 7.
27 positions[8] uchar 226 RW Programmable logical lens position 8.
28 positions[9] uchar 255 RW Programmable logical lens position 9.
29 positions[10] uchar 27 RW Programmable logical lens position 10.
30 positions[11] uchar 55 RW Programmable logical lens position 11.
31 positions[12] uchar 84 RW Programmable logical lens position 12.
32 positions[13] uchar 112 RW Programmable logical lens position 13.
33 positions[14] uchar 140 RW Programmable logical lens position 14.
34 positions[15] uchar 169 RW Programmable logical lens position 15.
35 positions[16] uchar 197 RW Programmable logical lens position 16.
36 positions[17] uchar 225 RW Programmable logical lens position 17.
37 positions[18] uchar 254 RW Programmable logical lens position 18.
38 positions[19] uchar 26 RW Programmable logical lens position 19.

Table 12: Public Variables of the Auto Focus Driver (continued)

Off Name Type Default RW Description
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 81 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Public Functions of AF Driver and Corresponding VMT Pointers
Public functions of the AF driver are those functions that can be called via pointers in the
driver's virtual method table (VMT) and are called in this way by other functions in the
AF and sequencer drivers.

The reason for using indirect function calls in the firmware is to permit selective func-
tion replacement, which may be needed to economically update or customize the firm-
ware. Since the MT9D111 users are expected to do most of the firmware customization,
it is necessary to give them at least some information on the firmware functions that
they can replace with their own. Hence, all these functions are designated as public.

Because there are disadvantages to having many indirect function calls and large jump
tables, only selected functions in each firmware driver have corresponding pointers in
the driver's VMT. They can be viewed as the top layer of the driver's functionality, under
which there may be one of more layers of functions used by the top layer to perform cer-
tain tasks recurring more than once in the firmware code. Those lower level functions
are always called directly and are all designated as private. While knowing and using the
private functions can help in development of substitutes for the public functions, brief
descriptions of the latter is all that most readers of this document are likely to need. Such
brief descriptions of the public functions of the AF driver are given in the list below,
which also shows the names of pointers to these functions that comprise the AF driver
VMT. The order of the pointers in the VMT is the same as in this list. All the pointers are
of type void* and therefore in indirect function calls each must be cast to the function
pointer type matching the corresponding function.

void AF_Init (void)

Pointer af.Vmt->plnit

Description Initializes the public variables of the AFM and AF drivers and calls function
AF_SetSize (indirectly, via pointer af.Vmt->pSetSize). The first variable initialized by
AF_Init is afm.type. It is set to 0, which means that the AF driver is always initialized as if
there is no lens actuator for it to control.

The initialization of all other AFM driver variables is taken care of by calling (directly)
AFM driver function AFM_Init. When afm.type=0, this function fills the RAM segment
holding the AFM driver variables with zeros and then writes positive default values to 3
of the variables whose type is void*. AF_Init then initializes the AF driver variables, using
explicit assignments of default values, which means that these values can be changed
only by overriding AF_Init. The final jump to the function pointed to by af.Vmt->pSet-
Size is preceded by two lines of code that fix the argument of this function, expected
frame size, at 800 x 600.

Use Called once, indirectly, by Sequencer driver function SEQ_Init, one of whose tasks
is to initializes all firmware drivers.

void AF_DownloadRegs_16 (unsigned char* sharpness)

Pointer af.Vmt->pDownloadRegsSnapshot

Description Reads 32 raw sharpness scores from IFP registers R[77:84]:2 and R[87:94]:2
and 16 average luminances from registers R[67:74]:2. Reduces these data to 16 normal-
ized sharpness scores by calculating for each AF window the ratio (S1+S2)/<Y>, where
<Y> is average luminance and S1 and S2 are raw sharpness scores multiplied by 128.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 82 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Replaces all normalized scores greater than 255 with 255. Stores all the normalized
scores in a 16-byte memory segment with starting address equal to the argument,
unsigned char* sharpness.

Use Called once, indirectly, by function AF_Run_snapshot, which tracks the normal-
ized sharpness scores while performing the first and optionally second scan of lens posi-
tions.

void AF_ParseCmd (void)

Pointer af.Vmt->pParseCmd

Description Uses the pointer afm.vmt->pSetPos to indirectly call AFM driver function
whose task is to move lens actuator to a new logical position given to it as an argument.
The argument passed to that function by AF_ParseCmd is af.bestPosition.

Use This function is called once, indirectly, by function AF_Run, when bit 7 of af.mode
equals 1. The purpose of this is to enable AF driver users to “manually” control their lens
actuators, once the setting of af.mode bit 7 to 1 has taken control away from the AF algo-
rithm.

The user can exercise control by writing to AF driver variable af.bestPosition, whose
value is passed by AF_ParseCmd to the AFM driver as desired logical lens position. The
AFM driver compares the desired position to the current logical lens position, afm.cur-
Pos, and if they differ, attempts to move the lens to the desired position. If a functioning
lens actuator is connected to the GPIO and the AFM driver is properly configured to con-
trol it, the attempt should result in a physical lens movement taking certain amount of
time. Duration of physical lens movements and the intervals at which the Sequencer
calls the function AF_Run must be considered when timing successive writes to af.best-
Position. Writing to it more than once per frame makes no sense, because the AF_Run
and AF_ParseCmd functions are executed only once per frame. Changing the value of
af.bestPosition before previously commanded lens movement is completed may disrupt
that movement if the change is communicated by AF_ParseCmd to the AFM driver and
it sends a new set of signals to the lens actuator.

Neither AF_Run nor AF_ParseCmd check the status of the AFM driver before passing the
value of af.bestPos to it, so it is the responsibility of the user to prevent timing-related
errors in the manual lens control mode. In the snapshot AF and creep compensation
modes (when bit 7 of af.mode is 0), the status of the AFM driver is always checked before
it receives a command from the AF driver—see description of AF_Run_snapshot below.

void AF_SetSize (t_size)

Pointer af.Vmt->pSetSize

Description Translates current settings of af.windowPos and af.windowSize to corre-
sponding settings of registers R[64:66]:2 and writes these settings to the registers. Sets
af.wakeUpLine in accordance with af.windowPos and af.windowSize, so that during
every frame readout the AF driver is activated two rows below the bottom of the 4 x 4
array of AF windows. If af.windowPos and af.windowSize are such that the bottom of the
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 83 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
array is outside the frame, the value given to af.wakeUpLine by AF_SetSize is invalid
(greater than frame height) and must be changed to something less than the frame
height, otherwise AF does not work.

Use Called indirectly by AF driver function AF_Init and Sequencer function
SEQ_ModeChange. The latter function is executed at Sequencer initialization, at every
change of sensor operation mode (e.g. from preview mode to capture mode), and also
whenever sq.cmd variable is set to 6 in the preview mode.

void AF_Run (void)

Pointer af.Vmt->pRun

Description Calls one of three other AF driver functions depending on the values of bits
6 and 7 of af.mode. If bit 7 equals 1 (manual lens control mode is enabled) the function
called is the one pointed to by the pointer af.Vmt->pParseCmd (AF_ParseCmd or its
user-supplied substitute). If bit 7 equals 0, the called function is determined by bit 6
(creep compensation mode switch).

If bit 6 is 0 (creep compensation mode is disabled, snapshot AF mode enabled), AF_Run
calls the function pointed to by pointer af.Vmt->pRunSnapshot (AF_Run_snapshot or its
user-supplied substitute). If bit 6 is 1, AF_Run calls a private AF driver function whose
task is to return an AF lens to previously found best focus position if the lens actuator is
unable to keep it there over long periods of time (for example, over a 30-second focus
lock).

According to external sources and tests carried out at Micron, helimorph actuators
exhibit this problem, referred to as position creep. Creep compensation currently imple-
mented in the AF driver would be more accurately called “brute force repositioning.” To
make the lens actuator “forget” the position creep, the lens is moved from its current
logical position, afm.curPos, to af.positions[0] and then back. If afm.curPos equals 0,
which is the default value of af.positions[0], af.positions[af.numSteps-1] is chosen
instead as the destination of the first move. The creep compensation function does not
move the lens as long as bits [5:0] of af.mode all equal 0. To correctly trigger lens reposi-
tioning in the creep compensation mode, one must set bit 0 of af.mode to 1.

Use Called once, indirectly, by the Sequencer driver, when bit 4 of sq.mode equals 1 (AF
is enabled) and Auto Exposure driver indicates that it is done setting sensor exposure
level. The Sequencer does not allow the AF driver to do snapshot mode auto focusing
while the exposure is not settled. Any violation of this prohibition results in an error sig-
nal: bit 4 of af.modeEx is set to 1.

void AF_Run_snapshot(void)

Pointer af.Vmt->pRunSnapshot

Description This function guides AF lens through the motion sequence illustrated in
Figure 30, Search for Best Focus, on page 68. During the first and optional second scans,
it keeps track of extreme normalized sharpness scores from every AF window and uses
them to select best lens position at the end of each sc an. Every time AF_Run_snapshot is
called (which happens once every frame, if bits [7:6] of af.mode are 0), the first thing it
does is an indirect function call using pointer afm.vmt->pGetStatus. This pointer points
to a lens-actuator-dependent status checking function of the AFM driver, whose task is
to check current status of the driver and lens actuator, update the variable afm.status
and return its updated value.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 84 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
After receiving this value, AF_Run_snapshot checks if its bit 1 equals 1, which indicates
that the lens actuator is busy moving the lens. If it is, AF_Run_snapshot immediately
returns, in effect putting the AF driver to sleep until the row count reaches af.wakeU-
pLine in the next frame. If updated afm.status indicates that the lens is stationary,
AF_Run_snapshot checks if the option to skip one extra frame after the end of every lens
movement is enabled (bit 3 of af.modeEx is 1) and if the current frame should therefore
be skipped. If the answer to both questions is yes, AF_Run_snapshot sets bit 2 of
af.modeEx to 1 and immediately returns, causing the AF driver to skip the frame. At the
next frame, the set bit tells AF_Run_snapshot that no more frame skipping is needed.
The function clears this bit whenever it equals 1.

Next, AF_Run_snapshot checks the current value of af.mode. A 0 value here also causes
AF_Run_snapshot to immediately return, because it indicates that no auto focusing has
been requested since the completion of last AF sequence. A correct request for auto
focusing (or creep compensation) is to set bit 0 of af.mode to 1 when bits 7 and [5:0] are
0. AF_Run_snapshot is called only in snapshot AF mode, when bits [7:6] of af.mode are 0.
This means that at the first execution of AF_Run_snapshot after the correct request for
auto focusing is made, af.mode equals 1. The function takes this as a signal to clear bit 4
of af.modeEx, clear a memory buffer for sharpness scores, command the AFM driver to
do the first flyback, and increment af.mode by 1. The incrementing of af.mode signals
that the first or second scan is in progress, and it continues until the scan is completed,
at which point AF_Run_snapshot resets af.mode back to 0.

Every time AF_Run_snapshot finds af.mode greater than 1, it proceeds to do something
with the lens that presumably is stationary at its current position. At every position but
the last in the sequence shown in Figure 43 on page 100, there are some calculations to
be done and then AF_Run_snapshot must give the AFM driver a command to move the
lens to a new position. During the scans, calculations at each position are preceded by
reading sharpness scores from registers. The reading is done by the function
AF_DownloadRegs_16, which AF_Run_snapshot calls via the associated pointer af.Vmt-
>pDownloadRegsSnapshot.

To command the AFM driver to move the lens, AF_Run_snapshot uses logical positions
stored in the array af.positions[] and function pointer afm.vmt->pSetPos. This pointer
points to a lens-actuator-dependent AFM driver function that takes a logical lens posi-
tion as an argument and acts to make the current logical lens position—afm.curPos—
equal to that argument. If afm.curPos already equals the argument, the function does
nothing. If the two are unequal, but there is no physical lens to move (afm.type=0), the
function simply makes afm.prePos equal to afm.curPos and then afm.curPos to its argu-
ment. If in addition to changing these variables, the function is required to move a phys-
ical lens, it programs the GPIO to generate appropriate signals to the lens actuator. The
time required to program the GPIO is usually much shorter than the time required to
move the lens, so in effect the AFM driver just sends the lens on its way to the new posi-
tion and then quickly gives MCU control back to the AF driver (AF_Run_snapshot),
which in turn quickly hands it over to the Sequencer. This quick return from AF-related
activities to routine frame-by-frame maintenance of proper exposure, white balance,
etc. is essential for the viability of MCU-controlled AF. The MCU cannot spend much
time moving an AF lens. The time required should correspond to a few image rows near
the bottom of every frame.

Use Called once, indirectly, by AF_Run, if bits [7:6] of af.mode are 0.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 85 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
void AF_Set2ndScan(void)

Pointer af.Vmt->pSet2ndScan

Description The sole purpose of this function is to change a number of AF driver vari-
ables so that the function AF_Run_snapshot can do the second scan after completing
the first. When considering the seemingly awkward features of second scan setup
described below, keep in mind the fact that both scans are done using the same firm-
ware code.

The first thing that AF_Set2ndScan does is set bit 1 of af.modeEx to 1. A non-zero value
for this bit tells the function AF_Run_snapshot that it must do some things differently
than the first scan—for example, it must take the value of bits [7:4] of af.numSteps2, not
the value of af.numSteps, as the number of lens positions to scan.

The second preparatory change done by AF_Set2ndScan is to make af.initPos equal to
af.numSteps. This change enables AF_Run_snapshot to locate the set of logical positions
that it must step through in the second scan within the array af.positions[].
AF_Set2ndScan then generates this set of positions, using as input bits [3:0] of
af.numSteps2, af.stepSize and af.positions[af.bestPosition], the position found best in
the first scan. AF_Set2ndScan takes into account where that position is relative to the
limits of the lens motion range and how it would be reached if the second scan were not
enabled. If the user-selected way to reach it includes the second flyback (bit 7 af.modeEx
is set to 1), AF_Set2ndScan assumes that the start position of the second scan must like-
wise be reached not directly from the end position of the first scan, but via logical posi-
tion 0, the default start position of the first scan. AF_Set2ndScan therefore adds an extra
zero to the list of positions calculated for the second scan—unless this list already starts
with logical position 0. If the second flyback is not enabled, no extra zero is added to the
list. In every case, the list is then appended to the list of positions already scanned in the
first scan (for example, written to af.positions[af.initPos], af.positions[af.initPos+1],
etc.).

The combined list of positions cannot have more than 20 entries, due to fixed 20-byte
size of af.positions[] array. This means that the first scan of, say, 15 positions can be fol-
lowed by a flyback to 0 and second scan of no more than 4 non-zero positions or, alter-
natively, a second scan of up to 5 non-zero positions if the second flyback is not enabled.

The last thing that AF_Set2ndScan does is to write the number of positions to be stepped
through in the second scan (including the extra zero, if necessary) to bits [7:4] of
af.numSteps2.

Use Called once, indirectly, by AF_Run_snapshot, if bit 5 of af.modeEx equals 1.

Lens Actuator Control

Logical and Physical Lens Position
As previously mentioned, the main task of the AFM driver is to translate every change in
the logical lens position requested by the AF driver into an appropriate change of physi-
cal lens position. It is somewhat difficult to generally specify what physical position
change is an appropriate response to AF driver's command to move the lens from one
logical position to another. Perhaps the best way to do it is to define an ideal relation
between the logical and physical lens position and then make this relation more “fuzzy”
and thus a better approximation of the real world. Ideally, we would like the physical
lens position, P, to be a fixed monotonic function of the logical position, L. This postu-
late can be written as an equation
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 86 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
(EQ 3)

where the subscript m indicates the monotonicity of the function. If this equation were
always true, then at any time t, after any arbitrarily long and complicated sequence of
lens movements, knowing the logical position would be sufficient to know the physical
position, since

(EQ 4)

Unfortunately, due to the existence of hysteresis and other real-world complications,
such simple 1-to-1 relation between the logical and physical position is impossible to
maintain over time. As a lens is moved here and there by a real actuator, every physical
position at which it stops, Pn (n = 0, 1, 2, …), is a function of the history of its movements
since at least actuator initialization (n = 0). For theoretical manageability, this history
can be reduced to a list (vector) of logical positions to which the AFM driver was com-
manded to move the lens:

(EQ 5)

Naturally, the latest element of this vector is the current logical position, Ln. The depen-
dence of the current physical position, Pn, on each component of the vector can be in
general arbitrarily significant, hence we should write

(EQ 6)

where g is a sort of “black box” function combining the effects of control exercised by
the AF driver with the effects of “forces of chaos:” hysteresis, friction, etc. However, for
the physical lens position to be controllable by the AF driver, its dependence on past
positions (history) must be always much weaker than the dependence on the current
logical position. Contribution of the history to the current physical position must there-
fore be inherently non-cumulative or cancellable by means of certain sequence of
movements. This postulate can be written as:

(EQ 7)

where d(Hn) is small compared to the range of physical positions

(EQ 8)

Not much more can be said about the relation between the logical and physical lens
position without reducing the generality of this discussion. To make the discussion a bit
less abstract, Figure 38 illustrates some of the concepts using a typical hysteresis loop.

P fm L()=

P t() fm L t()()=

Hn Ln Ln 1– Ln 2– … L0, , , ,()=

Pn g Hn() g Ln Ln 1– Ln 2– … L0, , , ,()= =

Pn fm Ln() d Hn()+=

Pn fm Ln() d Hn() << fm Lmin() fm Lmax()–+=
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 87 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Figure 38: Example of Hystereis-affected Relation Between Physical and Logical Lens Position

In Figure 10, the physical position, P, is not a simple function of the logical position, L,
but depends also on history of previous lens movements, H. This dependence may be
expressed by adding a history-dependent correction, d(H), to a function fm(L) repre-
senting an ideal relation between P and L. What the function fm(L) should be, aside from
being monotonic, is largely a matter of choice. One possible choice of fm(L) is depicted
by the straight line connecting points (L0,P0) and (L3,P3). Four examples of correspond-
ing history-dependent corrections are depicted by vertical arrows. Instead of this linear
function, one could choose as fm(L) one of the branches of the hysteresis loop—the
ascending one. With this choice of fm(L), d(H) would be nonzero on the descending
branch only and would equal the difference between the branches.

Managing Lens Actuator Hysteresis
Like all macroscopic mechanical devices, lens actuators have intrinsic hysteresis, whose
effect is to make physical position of the lens a function of not only the current logical
position set by the AF driver, but also of previous lens movements. The problem that the
dependence of the physical position on history poses for the scan AF algorithm can be
summarized thus: Knowing which logical lens position has been found best in the first
or second scan, how to return the lens to the physical position that produced the win-
ning sharpness scores?

As can be seen in Figure 42, unless a logical position is very close to the low or high of the
logical position range, there are two very different physical positions corresponding to
it, one on the ascending branch of the hysteresis loop and another on the descending
branch. For example, logical position L1 corresponds to physical positions P1 and P5.
Suppose that L1 has been found to be the best logical position in a scan that started at L0
and ended at L3. The physical position corresponding to L1 was P1, because physical

P3

Physical
Lens

Position

P0 = P6

L0 = L6

L3

fm(L)

d(H1)

d(H2)

L1 = L5

L2 = L4

d(H4)

d(H5)

P4

P2

P1

P5
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 88 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
movements of the lens during the scan corresponded to moving up the ascending
branch of the hysteresis loop. The lens ended at P3 and now the question is: how to
return it to P1 or close enough to get focus as good as at P1?

The AF driver has essentially two ways to do it. The first way is to command the AFM
driver to move the lens to back L0 and then from there to L1. This should bring the lens
first to P0 down the descending branch of the hysteresis loop, and then back to P1 along
the ascending branch. The assumption on which this “flyback” procedure relies is that
the hysteresis loop is closed, i.e. the end point of its descending branch, (L6,P6), is the
same as the starting point of the ascending branch, (L0,P0). If this assumption is correct
or at least the difference between P0 and P6 is very small, then the flyback procedure
allows one to bring the lens back to P1 blindly, without knowing the exact shape of the
hysteresis loop.

It is necessary to know the shape of the loop to use the second method of returning the
lens from P3 to P1, which has been mentioned previously as the direct move to best
focus position involving a backlash-compensating step. The direct move means going
from P3 to P1 down the descending branch of the hysteresis loop. The problem that the
AF driver has in commanding such a move is that it can only give a command to go to a
certain logical position, but the logical position corresponding to P1 on the descending
branch is impossible to calculate without knowing the shape of the branch. The AF
driver does not have any means to memorize, much less determine, the exact shape of
the hysteresis loop of the lens actuator it works with, so it estimates the logical position it
needs by subtracting from the position L1 a fixed value stored in the variable afm.back-
lash.

This estimate is generally crude because the subtracted value should vary with P1 to
match the varying horizontal width of the hysteresis loop. However, it can be reasonably
accurate if afm.backlash is correctly set to the average horizontal width of the loop and
the loop is much slimmer than the one shown in Figure 38. It is completely accurate
only if the hysteresis loop has a parallelogram shape, like that shown in Figure 39 and its
horizontal width equals afm.backlash. If these conditions are met, then going from L3 to
the logical position (L1-afm.backlash) along the descending branch of the loop can be
viewed as taking two distinct logical steps: a step of length afm.backlash that compen-
sates for lens actuator backlash and has no physical effect on the lens, and another step
of length (L3-L1) that brings the lens to the desired physical position P1. Hence,
afm.backlash is referred to below as the logical length of backlash-compensating step.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 89 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Figure 39: Hystereis Loop Typical for Simple Mechanical Gears

Note: The loop above has a parallelogram shape and therefore a constant horizontal (logi-
cal) width. This width is often called backlash.

Timer
As previously mentioned, one of the tasks of the AFM driver critical for proper function-
ing of the AF algorithm is to correctly and constantly communicate to the AF driver
whether the lens it controls is stationary or moving. This is required to prevent the AF
driver from using sharpness scores distorted by lens motion and from issuing new com-
mands to move the lens while a previous one is still being executed. The AFM driver
indicates that the lens is moving by setting bit 1 of the variable afm.status, which also
carries information about lens actuator errors and other aspects of its status. Obviously,
the value of this variable must be updated to correctly reflect true actuator status. The
AFM driver includes lens-actuator-specific functions named AFM_GetStatus* (where *
stands for a lens actuator identifier) that update afm.status and return its updated value
when called. The AF driver calls one of them indirectly (using the pointer afm.vmt-
>pGetStatus), whenever it wakes up and needs to know if the lens is in motion.

A function updating afm.status must have some source of current information about
lens movement or, at least, about the time elapsed since the lens actuator last received a
command to move the lens and time required to execute this command. The most reli-
able source of current information would be a lens actuator outputting a digital busy sig-
nal while moving the lens. Unfortunately, most actuators do not provide such feedback.
However, the waveform generator in the GPIO module can provide such a signal, if it is
the source of waveforms driving lens movements from start to finish, not just starting
them. The time when these waveforms are generated can be identified with the time of
lens motion, even though the motion may really die down a while after the waveforms
are finished. A busy signal from the waveform generator is therefore as good as one from
the lens actuator—unless the actuator is not responding to the driving waveforms as
expected.

P3

Physical
Lens

Position

P0

L0

L3 L1

L2

P2

P1

Lens
Actuator
Backlash

Lens
Actuator
Backlash
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 90 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Lens actuators that make it most difficult to wait through lens movements meet two cri-
teria:

1. They are command-driven (meaning their movements are started, not sustained, by
input signals)

2. They provide no motion-indicating feedback
Helimorph or VCM lens actuators incorporating two-wire serial interface-enabled digi-
tal-to-analog converters (DACs) are good representatives of this type. If a command-
driven lens actuator does not provide any feedback about lens motion after receiving a
command to move the lens from position A to position B, the AFM driver must some-
how predict how long the execution of this command will take. After making a predic-
tion, it must keep track of the time elapsed since the command was given, and until this
time reaches the predicted value, answer all inquiries about lens actuator status by set-
ting bit 1 of afm.status to 1. As long as the AFM driver does not underestimate the actual
duration of lens movements, interactions of the AF driver with the FME and lens actua-
tor are safely timed. To time them optimally and thus achieve the quickest possible AF,
one must refine the AFM driver's predictions of lens travel time until they perfectly
match the real behavior of the lens actuator. In practice, some balance must be struck
between the AF speed, safety, and size of code required to model the lens actuator
behavior.

The need to keep track of time after initiating lens movements has been the primary rea-
son for including an object-like set of public variables and functions called timer in the
AFM driver. It could also be called a counter of master clock cycles, but this would lead
to confusion with 32-bit master clock cycle counter implemented in hardware that the
timer functions simply put to a particular use. The use is to mark a certain moment in
time and then periodically check if a pre-set amount of time has elapsed since the
marked moment. Alternatively, this can be seen as putting a mark at a point in the
future, at a pre-set distance from now, and then checking as time goes by if the mark is
still ahead or has been left behind.

Two timer functions, AFM_TimerSetDelay and AFM_TimerIsStopped, utilizing three 16-
bit timer variables—afm.timer.startTime, afm.timer.stopTime, and afm.timer.hiWord-
MclkFreq—provide a convenient way to do it, albeit with a somewhat limited accuracy.
To minimize code size, both functions read only the upper word (16 most significant
bits) of the master clock cycle counter, which limits their time resolution to dt = 216/
fmclk, where fmclk is master clock frequency. At nominal fmclk = 80 MHz, dt equals
approximately 0.82ms. The function AFM_TimerSetDelay, which marks a point in the
future for the other function to look for, takes as an argument the time interval that
should separate that point from the moment of its selection. The interval should be
given in milliseconds and must be greater than zero for any point in the future to be
marked. This latter requirement is verified immediately after AFM_TimerSetDelay is
called.

Upon finding that its argument, unsigned integer wDelay, is positive, the function does
the following:

1. Makes wDelay = wDelay*afm.timer.hiWordMclkFreq/1000, to convert it from a time
interval in milliseconds to a multiple of dt

2. Copies the upper word of the current master clock cycle count to afm.timer.startTime
3. Checks if wDelay < 0xFFFF-afm.timer.startTime. If it is, then the function makes

afm.timer.stopTime = afm.timer.startTime+wDelay. Otherwise, afm.timer.stopTime
is set to wDelay-(0xFFFF-afm.timer.startTime), which makes it less or equal to
afm.timer.startTime
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 91 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Upon finding that wDelay = 0, AFM_TimerSetDelay does not go through the three steps
noted above, but instead immediately sets afm.timer.stopTime = afm.timer.startTime =
0 and returns.

What AFM_TimerSetDelay does in step 3 above makes the timer immune to overflows of
the master clock cycle counter. Since afm.timer.startTime can be anywhere between 0
and 0xFFFF, and so can wDelay, their sum can be larger than 0xFFFF. When it is, it
means that the clock cycle counter will overflow between the present call to
AFM_TimerSetDelay and the point in the future that AFM_TimerSetDelay is supposed
to mark. Upon an overflow, the counter “wraps around”—it automatically resets to 0
and keeps on counting (in other words, what can be read from it at any time is clock
cycle count modulo 232). This behavior is matched by setting afm.timer.stopTime to
wDelay-(0xFFFF-afm.timer.startTime) instead of afm.timer.startTime+wDelay when the
latter sum exceeds 0xFFFF.

Whatever the value of this sum is, if wDelay is greater than 0, AFM_TimerSetDelay sets
afm.timer.startTime and afm.timer.stopTime to two different values, usually also
greater than 0. By doing so, AFM_TimerSetDelay in effect activates the timer and pro-
grams it to “tick” until the number of milliseconds received by the function as an argu-
ment passes by. At the end of this time—the point in time previously marked by
AFM_TimerSetDelay—the timer will stop “ticking” and will remain active, but
“stopped.” In similar figurative terms, the effect of calling AFM_TimerSetDelay(0) can be
described as de-activating and resetting the timer. When de-activated, the timer can
also be thought of as “stopped.”

The argument-less Boolean function AFM_TimerIsStopped answers whether the timer
is presently “stopped” or “ticking” (in other words, if the delay set by
AFM_TimerSetDelay is over or not). It also automatically de-activates and resets the
timer if it is “stopped.” The C code of this function is so short and simple that it seems
better to give it verbatim below rather than translate it into plain English.

BYTE AFM_TimerIsStopped(void)

{

 WORD t;

 if (afm.timer.startTime < afm.timer.stopTime) {

 t = sys.ClockCnt.Word.Hi;

 if ((t > afm.timer.startTime)&&(t < afm.timer.stopTime)) return 0; // timer
is ticking

 }

 else if (afm.timer.startTime > afm.timer.stopTime) {

 t = sys.ClockCnt.Word.Hi;

 if ((t > afm.timer.startTime)||(t < afm.timer.stopTime)) return 0; // timer
is ticking

 }

 afm.timer.startTime = 0;

 afm.timer.stopTime = 0;

 return 1; // timer is stopped

} // End of AFM_TimerIsStopped
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 92 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
A few words and symbols in this code may require clarification. The variable types BYTE
and WORD are equivalent to unsigned char and unsigned int, respectively. The value
assignment t = sys.ClockCnt.Word.Hi makes the local variable t equal to the upper word
of the current count of master clock cycles. The symbols && and || represent logical
operations AND and OR, respectively. Everything that follows // in a line is a comment.

To complete the discussion of the functions, AFM_TimerSetDelay and
AFM_TimerIsStopped, consider an example of their use to track lens motion time. Sup-
pose that the AF driver has given the AFM driver a command to move an AF lens from its
current logical position, afm.curPos, to logical position af.positions[0]. The AFM driver
has received this command, estimated that executing it will take 80 milliseconds, passed
it to a helimorph lens actuator via a serial interface, called AFM_TimerSetDelay(80), set
bit 1 of afm.status to 1, and returned control to the AF driver. The AF driver now goes to
sleep until af.wakeUpLine in the next frame, about 33ms. When it wakes up again, the
first thing it will need is the answer to the question: is the lens moving or not? To give the
AF driver an answer, the AFM driver includes the following public function:

BYTE AFM_GetStatusHelimorph(void)

{

 if (AFM_TimerIsStopped()) { // lens is not moving

 afm.status &= ~2; // clear bit 1 of afm.status

 }

 return afm.status;

} // End of AFM_GetStatusHelimorph

When the AF driver calls this function after a 33ms sleep, it will return afm.status with bit
1 equal to 1, because the return value of AFM_TimerIsStopped after 33ms will be 0.
Upon finding bit 1 of afm.status set, the AF driver will immediately go back to sleep for
another 33ms. After waking up and calling AFM_GetStatusHelimorph again, it will find
bit 1 of afm.status unchanged. Another 33ms sleep will follow. Finally, on the third call,
99ms after issuing the command to move the lens, the AF driver will find the timer
stopped, which will result in clearing bit 1 of afm.status, which the AF driver will take as
a signal that the lens has stopped moving. Of course, this signal will not reflect actual
lens status, but the status of the timer, determined by the AFM driver's prediction that
the lens movement commanded by the AF driver should take 80ms.

The final topic to discuss here is how the AFM driver can make such predictions. In its
current version, the need for predicting lens travel time is met in a rather simple way.
The driver includes a public function AFM_TimerSetTimeToMove that takes as argu-
ments two logical lens positions and roughly estimates the time required to move the
lens between them. The function can use two different estimation methods, both of
which rely on three user-set parameters, afm.timer.maxShortDelay, afm.timer.max-
LongDelay, and afm.timer.maxQuickMove, as a sole source of information about how
fast the lens actuator moves the lens. The default method of piecewise linear estimation
is used when bit 0 of afm.timer.config is cleared. Setting this bit to 1 enables the alterna-
tive bipolar method. The bipolar method is very simple: if the distance between the two
logical positions given to AFM_TimerSetTimeToMove as arguments exceeds
afm.timer.maxQuickMove, then afm.timer.maxLongDelay is selected as the proper lens
travel time estimate. Otherwise, unless the two logical positions are the same, the esti-
mate equals afm.timer.maxShortDelay. If the two positions are the same, the estimate
should be 0, and indeed is 0 if bit 1 of afm.timer.config is cleared. However, if this bit is
set to 1 and the positions are the same, the function AFM_TimerSetTimeToMove out-
puts afm.timer.maxShortDelay instead of 0.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 93 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
The slightly more complicated piecewise linear estimation method has been developed
to model temporal characteristics of helimorph lens actuators. The position of a lens
mounted on one of those actuators is a fairly linear function of DC voltage applied to its
helimorph. In other words, changing this voltage causes the lens to move a distance pro-
portional to the voltage change. The voltage can range from negative to positive, e.g.
from -80 V to 80 V. Helimorph response to voltage adjustments in the negative and posi-
tive directions is roughly symmetrical, so it is enough to consider only changes in the
positive direction. Lens movements caused by decreasing the absolute value of the volt-
age are generally faster than movements caused by increasing it, especially when the
absolute value is already high. As a result, when the lens moves across its logical position
range, from 0 to 255, in steps of equal length, lS << 255, the time needed to take one step,
tS, is a function of lens position, P = i*lS, where i = 1, 2, 3, … . The plot of this function,
tS(p), looks like Figure 40.

Figure 40: Time Needed to Increase Voltage on Helimorph by 10V as a Function of Lens Position

Note: Time needed to step up voltage applied to helimorph as a function of the voltage and
of the corresponding logical lens position. The curve shows that it does not take long
to go, for example, from -80V to -70V, from -70V to -60V, etc., because the absolute
value of the voltage is reduced with each step until it becomes 0. However, stepping
up from 0 to 10V, from 10V to 20V, and so on gets progressively more difficult and
slow. The time required to move the lens between any two logical positions can be
estimated by summing up the durations of 10-volt steps connecting the two posi-
tions. For example, a jump from lens position 0 (voltage of -80V) to lens position 64 (-
40V) should take about 8ms, because it corresponds to four +10V steps, each of which
takes about 2ms. On the other hand, the jump back from position 64 to position 0 (-
40V to -80V) takes much longer, because the portion of the curve corresponding to it
is between lens positions 192 and 255 (+40V to +80V).

What makes tS(p) interesting is that by integrating it over an appropriate range of p one
can estimate the duration of every conceivable lens movement (see the note below
Figure 40 for an example). The integration can be done individually for every pair of

50

Logical Lens Position

10-volt
Step

Duration
(ms)

0
0 255 128

Voltage on Helimorph (V)

-80 +80 0

2

-40 +40

64 192
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 94 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
positions between which the lens may have to be moved, but this approach is not very
efficient. Instead of computing definite integrals of a function (especially in real time) it
is usually better to take a look at its indefinite integral and see if that function can be
conveniently approximated. Since tS(p) is defined only for p = i*lS, where i = 1, 2, 3, … ,
what we really want to look at is a function t0(p) defined by

 (EQ 9)

As it turns out, when tS(p) is like that depicted in Figure 41, t0(p) can be reasonably well
approximated by two pieces of linear functions, as shown in Figure 41. All that is needed
to define these two pieces are just three parameters like those of the function
AFM_TimerSetTimeToMove. In other words, a piecewise linear function T(p) approxi-
mating t0(p) can be computed for every p using only very simple arithmetic and four
integer numbers: p, afm.timer.maxShortDelay, afm.timer.maxLongDelay, and
afm.timer.maxQuickMove. This makes estimating lens travel times rather trivial. For
every two lens positions, p and q, the time required to move the lens from p to q approx-
imately equals

(EQ 10)

and

(EQ 11)

The function AFM_TimerSetTimeToMove uses Equation 10 and Equation 11 to estimate
lens travel time when the positions p and q given to it as arguments differ from each
other and bit 0 of afm.timer.config is 0. When p = q, the function produces a travel time
estimate of 0 or afm.timer.maxShortDelay, depending on the current value of bit 1 of
afm.timer.config.

It is worth underscoring that the piecewise linear estimation method described above is
not intended for use with helimorph lens actuators only. The three programmable
parameters of the function T(p) make it very adaptable. Adapting it for use with other
lens actuators should definitely be considered before developing any alternative solu-
tion.

Regardless of the method it employs to estimate lens travel time, the function
AFM_TimerSetTimeToMove always programs its estimate into the timer using a direct
call to the function AFM_TimerSetDelay. Hence, a single call to
AFM_TimerSetTimeToMove is all that is required to start the timer “ticking” after com-
manding a lens actuator to move.

t0 p() ts i 1+()

i 0=

int p
ls
---⎝ ⎠
⎛ ⎞

∑=

t+ p q,()+ T q() T p(), if p > q–=

t- p q,()– t 255 p– 255 q–(,), if p > q +=
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 95 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Figure 41: Piecewise Linear Function Used by AFM Driver to Estimate Lens Travel Time

Note: Piecewise linear approximation of the function t0(p) defined by Equation 9 on the
preceding page. The dashed curve is a smoothed plot of this function that does not
show its steps, but only the overall shape that must be approximated. The solid line
shows one possible approximating function T(p).

Serial Interface
The AFM driver includes a small library of public functions supporting two-way serial
communication between the MT9D111 microcontroller and any two-wire serial inter-
face external devices through two user-selected GPIO pads. The following functions
belong to this library:

• void AFM_SiSendCmd(WORD wCmd)
• void AFM_SiSetActvFlag(BYTE bOn)
• BYTE AFM_SiSendByte(BYTE bByte)
• void AFM_SiRecvByte(BYTE *pDestByte)
• They can be called indirectly using the following pointers:
• afm.si.vmt->pSendCmd
• afm.si.vmt-> pSetActvFlag
• afm.si.vmt->pSendByte
• afm.si.vmt->pRecvByte
The functions use the following variables as configuration parameters:

• afm.si.clkMask
• afm.si.dataMask
• afm.si.clkQtrPrd
• afm.si.needsAck
• afm.si.slaveAddr
The first two of the above variables select the GPIO pads that all the functions use as the
clock and data lines. The third variable sets the rate of the two-wire serial interface clock:
the rate is approximately inversely proportional to afm.si.clkQtrPrd. The fourth variable
enables/disables detection of ACK bits. The fifth variable specifies the device address
that the functions must use to communicate with the external device of interest.

Logical End Position of Lens

Time of
Lens Travel

from
Position 0

to
End Position

(ms)

0
0 255

afm.timer.maxQuickMove

afm.timer.
maxLongDelay

afm.timer.
maxShortDelay
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 96 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
The function AFM_SiSendByte sends its 1-byte argument to the external device and
returns 1 or 0, depending on whether the device has responded with an ACK bit and
whether such a response is needed. If afm.si.needsAck = 1, it means that ACK is needed.
AFM_SiSendByte returns 1 upon receiving it. If it is missing, the function returns 0. If
afm.si.needsAck = 0, AFM_SiSendByte always returns 1.

The function AFM_SiRecvByte receives a byte of data from an external two-wire serial
interface transmitter and stores it at the memory location pointed to by its argument. It
acknowledges receiving the data by sending an ACK bit back to the transmitter.

The function AFM_SiSetActvFlag is for generating START and STOP bits that bracket
every two-wire serial interface transmission. If its argument is 0, it sends a STOP bit. Any
other argument produces a START bit.

The function AFM_SiSendCmd can send a 2- or 3-byte long command, the first byte of
which is always equal to afm.si.slaveAddr. The second command byte equals the lower
byte of the function's 16-bit argument, wCmd. The upper byte of wCmd is sent next if it
differs from 0xFF. If it equals 0xFF, it is discarded. The entire command is bracketed by
START and STOP bits generated by AFM_SiSetActvFlag.

Each command byte is sent using the function AFM_SiSendByte. If after sending some
byte AFM_SiSendByte returns 0 (indicating the absence of a needed ACK bit), the trans-
mission of the command is aborted and restarted from the first byte. Up to two restarts
can occur if the problem of missing ACK bits persists. The function AFM_SiSendCmd
uses afm.status variable to count the restarts and report the final result of the command
transmission. A successful transmission is indicated by afm.status = 0. If afm.status > 0,
all three attempts to send the command have failed due to the lack of acknowledgement
from the intended command recipient.

Initial Positioning of Stepper Motors
Lens actuators powered by stepper motors convert rotational (or periodic) motion of a
stepper motor shaft to linear motion of a lens, usually by means of a helical gear. As the
name stepper motor indicates, rotation of the shaft is not smooth and continuous, but
occurs by stepping between several fixed angular positions distributed evenly within the
0-to-360-degrees range. Each of these positions corresponds to a unique polarization of
stepper motor windings, brought about by applying a unique set of voltages to motor
inputs. Likewise, each position of the lens corresponds to a single state of stepper motor
inputs. However, unless the motor is permitted to rotate its shaft by no more than
360 degrees, each angular position of the shaft corresponds to many positions of the
lens —even if we assume that the gear connecting the shaft to the lens is completely
backlash-free.

One consequence of this is that when a stepper motor in a lens actuator is powered up
and its windings polarized in a certain way, the lens position cannot be determined from
the state of the motor. If the initial lens position is unknown, it is impossible to tell how
far the lens can be moved forward and backward without crossing the limits of its useful
motion range. Going outside this range can cause mechanical problems which nega-
tively affect further lens movements (jamming of the helical gear, for example). Just as
important, an uncertain lens position may also prevent the AF algorithm from moving
the lens over the whole range and finding best focus position within it. In order to avoid
both overshooting and never reaching the limits of the useful motion range, at least one
fixed lens position in the range must have a unique “signature” allowing the device con-
trolling the lens actuator to find it after actuator power-up, irrespective of the initial
position of the lens. In other words, the controlling device must receive from the actua-
tor some feedback signal depending on lens position and having at least two values (0
and 1, for example).
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 97 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
The position signature provided by this signal can be a certain signal value or signal
change that occurs only at one lens position. The position with the signature must be
fixed in the sense that the distances between it and the ends of the useful motion range
must not change in time, must not change from one actuator to another and/or must be
made known to the actuator controller before actuator initialization. If these conditions
are met, once the lens is brought sufficiently close to the position with the signature, it
can be moved anywhere within its useful motion range without losing track of its posi-
tion. All that is required to keep the lens position known, even after a very long sequence
of movements, is to count stepper motor steps and take certain measures to avoid or
compensate backlash. Of course, this is true under the assumption that the lens actuator
is mechanically sound and lens movements are not hindered in any way.

The device most often used to produce position signature in stepper-motor-powered
lens actuators is called photointerrupter (PI). The photointerrupter consists of a light-
emitting diode (LED) and a phototransistor positioned in such a way that the light from
the LED can alternatively fall on the phototransistor or be blocked by a designated part
of the moving lens mount, depending on lens position. Typically, the light is blocked
over most of the lens motion range and no light throughput results in low output signal
from the PI. As depicted in Figure 42, the light throughput begins to increase gradually
as the lens crosses certain point near one end of its motion range and reaches 100 per-
cent before that end is reached. As a result, over a short range of lens positions, the PI
output signal is higher than elsewhere. Its exact value depends on phototransistor bias
and can be set above the digital low/high threshold of the device controlling the lens
actuator. A digital input of the device can then be used to sense the PI output. Sensed in
this way, the PI output signal is reduced to two values, 0 and 1, between which the signal
jumps only once as the lens is moved one way or the other across its motion range. The
single PI signal transition or edge occurring at a fixed point is the simplest signature suf-
ficient to disambiguate and then track lens position linked to angular position of stepper
motor.

Figure 42: Typical Relation Between Photointerrupter Output SIgnal and Lens Position

Note: Typical relation between photointerrupter (PI) output signal and lens position in a
camera module where the PI is used for initial positioning of the lens.

PI
output
signal

PI active
state = 1

0/1 threshold

PI inactive
state = 0

Logical Lens Position

Full Range of Motion of Stepper Motor and Lens

Useful Range of Motion of Stepper Motor and Lens

Position of PI signal
edge (near end of PI active range)

PI inactive range

Far
end of PI

active
range

PI active
range

PI edge
offset

0 255
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 98 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
The AFM driver in the MT9D111 includes a function called AFM_ResetStMotor, whose
main task is to perform initial positioning of stepper-motor-powered, PI-equipped lens
actuators. The initial positioning involves disambiguation of physical lens position by
finding the PI signal edge, moving the lens a pre-set number of stepper motor steps for-
ward or backward from this edge, and equating the physical position thus reached with
the logical position 0 or 255. More precisely, AFM_ResetStMotor accomplishes its main
task in the following steps:

1. Powers up the PI by setting high the GPIO output selected by afm.sm.piEnabMask.
2. Waits a short time (proportional to bits [7:5] of afm.sm.piConfig) for the PI output sig-

nal to settle after power-up.
3. Reads the PI output signal through the GPIO input selected by afm.sm.piOutMask.
4. Compares current digital value of the PI output to bit 2 of afm.sm.piConfig (this bit

identifies PI output value expected in lens position range referred to in Figure as PI
active range).

5. If the current value of the PI output matches the value of bit 2 of afm.sm.piConfig,
moves the lens by half the width of its useful motion range in the direction opposite to
that indicated by bit 1 of afm.sm.piConfig (this move takes the lens from the PI active
range to PI inactive range—see Figure 42.

6. Repeats steps 3 and 4. If the value of the PI output differs from bit 2 of afm.sm.piCon-
fig (which indicates that current lens position is in the PI inactive range), goes to step
7. Otherwise, goes to step 8.

7. Moves the lens by 1, 2 or 4 stepper motor steps (according to the value of bits [1:0] of
afm.sm.drvsGenMode) in the direction of the PI signal edge (indicated by bit 1 of
afm.sm.piConfig).

8. Moves the lens by afm.sm.piEdgeOffset times 1, 2 or 4 stepper motor steps (depend-
ing on the value of bits [1:0] of afm.sm.drvsGenMode) in the direction indicated by bit
3 of afm.sm.piConfig (this move takes the lens from the PI signal edge to its desired
initial position).

9. Makes afm.curPos equal to 255 times bit 4 of afm.sm.piConfig (this links the initial
lens position reached in step 8 with logical position 0 or 255).

10. Powers down the PI by setting low the GPIO output selected by afm.sm.piEnabMask.

Figure 43, Figure 44, and Figure 45 schematically depict several sequences of lens move-
ments possible during initial stepper motor positioning done by AFM_ResetStMotor.
Input parameters of this function allow users to choose between different p.ositioning
sequences are listed in Table 13, Programmable Parameters of Stepper Motor Position-
ing Function, on page 102. A flowchart of the function follows in Figure 46 and Figure 47.

It should be noted that though by default the function AFM_ResetStMotor is executed
only at initialization of the AFM driver with afm.type = 2+128 = 130, it can also be called
right before the MT9D111 enters standby mode with afm.type = 2 and/or right after it
exists this mode. The optional pre- and post-standby execution of AFM_ResetStMotor is
enabled by setting, respectively, bits 4 and 5 of afm.custCtrl to 1. Reinitializing a stepper
motor at standby may be a way to periodically cancel any slow drift of the lens motion
range that may occur, for example because of accumulation of small round-off errors in
lens position calculations.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 99 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Figure 43: Lens Movements During Initial Positioning of a Stepper Motor (Example 1)

Note: Two sequences of lens movements used for initial stepper motor positioning when
bits [4:0] of afm.sm.piConfig are set to 13 (binary '01101'). The second sequence
results from the requirement that search for PI signal edge must always begin from a
lens position where the PI is inactive. The output signal from the PI typically is higher
when the device is active (detects some light), but the AFM driver does not require
that. The polarity of the output signal is selectable by means of bit 2 of afm.sm.piCon-
fig.

Figure 44: Lens Movements During Initial Positioning of a Stepper Motor (Example 2)

Note: Two sequences of lens movements possible when bits [4:0] of afm.sm.piConfig are set
to 27 (binary '11011'). These sequences differ from the sequences depicted in
Figure 43 in the following ways: direction of search for the PI edge is reversed
(because bit 1 of afm.sm.piConfig is set to 1), PI active state is low (bit 2 equals 0), and
afm.curPos is set to 255 rather than 0 at the end of each sequence (because bit 4 of
afm.sm.piConfig equals 1).

0 255

PI
output
signal

Sequence
11011-0

PI active range

PI inactive range

Logical position

Sequence
11011-1

0 255

PI
output
signal

PI active range

PI inactive range

Logical position

Sequence
11011-0

Sequence
11011-1
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 100 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Figure 45: Lens Movements During Initial Positioning of a Stepper Motor (Example 3)

Note: Four lens motion sequences are possible when bits [3:0] of afm.sm.piConfig are set to
5 (binary '0101'). The only difference between the top two sequences and the
sequences shown in Figure 43 is reversed direction of lens jumps from PI signal edge
to logical position 0. The direction of this jump is determined by bit 3 of
afm.sm.piConfig and its length by afm.sm.piEdgeOffset. If afm.sm.piEdgeOffset is
greater than 0 and bit 3 equals 0, the AFM driver moves the lens back into the PI inac-
tive range after detecting the PI signal edge. If bit 3 is 1, the lens ends up at a position
where the PI is active, as shown in Figure 43.

To switch between the top two and bottom two sequences above, one must toggle bit
4 of afm.sm.piConfig and change the value of afm.sm.piEdgeOffset. The maximum
value of the latter variable is 255, which means that at maximum motion precision
(when bit 0 of afm.sm.drvsGenMode equals 1), the lens cannot be moved more than
255 stepper motor steps away from the PI signal edge. When the initial lens position-
ing is done with minimum precision (bits [1:0] of afm.sm.drvsGenMode equal 0),
afm.sm.piEdgeOffset = 255 corresponds to 1020 stepper motor steps.

Sequence
00101-1

Sequence
10101-0

Sequence
10101-1

Sequence
00101-0

0 255

PI
output
signal

PI inactive range

Logical position

PI active range
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 101 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Table 13: Programmable Parameters of Stepper Motor Positioning Function

Variable Name Bit(s) Valid Values Parameter Description

1 afm.sm.piConfig 0 0, 1 Bit selecting one of two possible ways to do initial
positioning of a stepper-motor-powered AF lens:
Setting this bit to 1 selects initial positioning with a
photointerrupter. Clearing this bit selects
positioning without a PI, by forcing the lens into a
preselected end of its motion range (see
afm.sm.piConfig bit 1 below).

2 afm.sm.piConfig 1 0, 1 Bit telling the AFM driver which limit of lens
position range is closer to the position marked by PI
output signal edge. The state of the PI output in the
position range between this limit and the signal
edge is referred to as PI active state and the range
itself is called PI active range.
When bit 1 of afm.sm.piConfig equals 0, the PI
signal edge is closer to logical position 0 than 255.
When the bit equals 1, the edge is closer to logical
position 255.
Since the relation between the logical and physical
lens positions is flexible, the logical position 0 can
correspond either to infinity focus position or near
focus position. The same is true of logical position
255.

3 afm.sm.piConfig 2 0, 1 Bit identifying the PI active state. The AFM driver
expects the active state to be low (0) or high (1)
according to the value of this bit.

4 afm.sm.piConfig 3 0, 1 Bit indicating the direction from the PI signal edge
to desired initial position of the lens. If this bit is 1,
the desired initial position is in the PI active range;
otherwise, it is on the other side of the PI signal
edge, in the range where the PI is inactive.

5 afm.sm.piConfig 4 0, 1 Bit selecting the value to be given to afm.curPos
once the lens is at the desired initial position. Bit
values of 0 and 1 correspond to afm.curPos values of
0 and 255, respectively.

6 afm.sm.piConfig [7:5] 0,…,7 Delay between powering up the PI and reading its
output the first time is proportional to the value
stored in these 3 bits.

7 afm.sm.piEnabMask [15:0] 1,…,4096 Mask selecting a GPIO pad as an output enabling
the PI (for example, afm.sm.piEnabMask = 4 selects
GPIO2).

8 afm.sm.piOutMask [15:0] 1,…,4096 Mask selecting a GPIO pad as an input for sensing
the output of the PI.

9 afm.sm.piEdgeOffset [7:0] 0,…,255 Distance between PI signal edge and the desired
initial position of the lens given as a multiple of the
smallest increment of lens position selected by bits
[1:0] of afm.sm.drvsGenMode.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 102 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Figure 46: Flowchart of AFM Driver Function Used in Initial Positioning of Stepper Motors (Page 1)

Note: The flowchart of the AFM driver function AFM_ResetStMotor whose task is to do ini-
tial positioning of stepper-motor-powered lens actuators (with or without a photoint-
errupter).

Is bit 0 of afm.sm.piConfig
= 0 ?

No

Is each afm.sm.pi*Mask
> 0 ?

Yes

Select default GPIO-PI connections:
afm.sm.piEnabMask = GPIO_PAD_5,
afm.sm.piOutMask = GPIO_PAD_6.

No

Set the PI-enabling output to 1 (logical HIGH)
to enable the PI.

Read bits [7:5] of afm.sm.piConfig and calculate desired time between powering up the PI and reading its output the
first time. Wait this time for the PI output to settle. Read the PI-sensing input and compare its state with the value of
bit 2 of afm.sm.piConfig, i.e. active state of the PI.

Is the state of PI-sensing
input equal to PI active
state?

Yes

Move the stepper 1, 2, or 4 steps (depending on the value of bits [1:0] of
afm.sm.drvsGenMode) in the angular direction for which the logical position
afm.curPos gets closer to 255*(bit 1 of afm.sm.piConfig).

Yes

Start of stepper positioning

Yes

Set current lens position,
afm.curPos, to 255*
(1-(bit 1 of afm.sm.piConfig)).

Is the state of PI-sensing
input equal to PI active
state?

No

Set current logical lens position, afm.curPos, to
255*(1-(bit 1 of afm.sm.piConfig)).

Move the stepper until afm.curPos =
255*(bit 1 of afm.sm.piConfig).
This forces the lens into the end of its
motion range selected by bit 1 of
afm.sm.piConfig.

End of stepper positioning

Is afm.curPos = 255*(bit 1 of
afm.sm.piConfig)?

No

Set PI-enabling output to
0 (logical LOW) to disable
the PI. Read the PI-sensing input.

Yes

An edge has been detected at the PI-sensing input. Go to next page.

No
Set afm.curPos=255*(bit 1 of afm.sm.piConfig). Move
the stepper until afm.curPos = 127 (i.e. until the
stepper is near the middle of its motion range).
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 103 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver

Micron Confidential and Proprietary Advance
Figure 47: Flowchart of AFM Driver Function Used in Initial Positioning of Stepper Motors (Page 2)

Is
afm.sm.piEdgeOffset = 0 ?

Move the stepper toward the middle of its
motion range by a number of steps equal to
afm.sm.piEdgeOffset times 1, 2, or 4 steps
(depending on the value of bits [1:0] of
afm.sm.drvsGenMode).

Yes

Set afm.curPos=255*(bit 4 of afm.sm.piConfig).

No

Yes

No

Is bit 3 of afm.sm.piConfig = 0
?

Move the stepper toward the nearest end of
its motion range by a number of steps equal
to afm.sm.piEdgeOffset times 1, 2, or 4 steps
(depending on the value of bits [1:0] of
afm.sm.drvsGenMode).

End of stepper positioning

Set PI-enabling output to
0 (logical LOW) to disable
the PI.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 104 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver FAQs

Micron Confidential and Proprietary Advance
Auto Focus Driver FAQs
• Is one second a reasonable adjustment time to get stable AF data?
• What settings adjust the AF ROI (Region of Interest) so that it only looks at the central

part of the image to determine the optimal focus position? The primary ROI is posi-
tioned horizontally and vertically between 1/3 and 2/3 of the image width/height.

• We tried to change the AF zone by DevWare. We think that “IFP Register Page2
REG#129-135” are registers for setting AF zone, but it seems that the register values
are not reflected to AF zone. Would you please explain the reasons? We would like to
know the default AF zone. It seems that the AF zone for a 1600x1200 image is different
from the 800x600 image used by DevWare.

Is one second a reasonable adjustment time to get stable AF data? One second seems
to be too long because the statistics update every frame. Even with 3 fps, you will not
need a full second. Is the positioning done by hand or machine? It is possible that the
hand/machine shakes while in position, which leads to initial AF statistic register insta-
bility.

What settings adjust the AF ROI (Region of Interest) so that it only looks at the central
part of the image to determine the optimal focus position? The primary ROI is posi-
tioned horizontally and vertically between 1/3 and 2/3 of the image width/height.
The AF variables related to the sizing of ROI have units of 1/16. This means that you can
evenly divide the region into half, quarter, etc., but not 1/3. If you do not need exactly 1/
3 size, you can use the following settings:

• VAR8=5, 0x02, 0x0055 // AF_WINDOW_POS (determines the x and y coordinates of
the starting coordinates)

• VAR8=5, 0x03, 0x0055 // AF_WINDOW_SIZE (determines the size of the ROI based on
the frame size)

• VAR8=1, 0x03, 0x0006 // SEQ_CMD (refresh mode)
With the above values, instead of 1/3=3.3333, you will get 5/16=0.3125. If you need
exactly 1/3, you may overwrite an AF function (for these two variables) and use the regis-
ter (with more resolution) instead.

We tried to change the AF zone by DevWare. We think that “IFP Register Page2
REG#129-135” are registers for setting AF zone, but it seems that the register values are
not reflected to AF zone. Would you please explain the reasons? We would like to know
the default AF zone. It seems that the AF zone for a 1600x1200 image is different from
the 800x600 image used by DevWare. The 16 windows used for AF are configured by
the variables af.windowPos (ID=5, offset=2) and af.windowSize (ID=5, offset=3). See the
description below:

Variable: af.windowPos

ID: 5, Offset: 2

Default value: 68

Description:

This variable is divided into two fields: bits [7:4] which specifies the scaled Y coordinate
where the frame starts, and bits [3:0] which specify the scaled X coordinate where the
frame starts. For example, if the value is set to 0xBC, then the starting coordinate of the
frame is 12/16 × frame width, 11/16 × frame height. Hence, an offset to the starting coor-
dinate can be easily set. A refresh command (seq.cmd=5) is needed for the new values to
be effective.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 105 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Driver FAQs

Micron Confidential and Proprietary Advance
Variable: af.windowSize

ID: 5, Offset: 3

Default value: 119

Description:

This variable is divided into two fields: bits [7:4] which specify the scaling factor of the
window height of the entire (not the individual 16) window, and bits [3:0] which specify
the scaling factor of the entire widow width. A factor x is defined as [(x+1)/16] × frame
height or width. For example, if the value is set to 0xEF, then the programmable window
size has a height and width of 15/16 × frame height and 16/16 × frame width, respec-
tively. A refresh command (seq.cmd=5) is needed for the new values to be effective. This
window size will be the area that AF uses for its analysis. The individual 16 windows will
be divided equally from the total window size.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_2.fm - Rev. A 6/05 EN 106 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Mechanism

Micron Confidential and Proprietary Advance
Auto Focus Mechanism

Introduction
This section describes the auto focus mechanics (AFM) drivers included in the firmware
of the MT9D111 image sensor. These drivers encapsulate all firmware code developed to
date by Micron to support AF function in cameras built around our sensors.

Table 14: Public Variables of the AFM Driver

Offset Name Type Default R/W Description

0 vmt void* E9AE RW Pointer to the driver's virtual method table (VMT). The AFM
driver includes a separate set of control methods for each
supported type of auto focus mechanism (see afm.type
below). Each set of methods is assessable via a separate VMT.
Pointing afm.vmt to one of those VMTs either enables the AF
driver to control the corresponding type of AF mechanism via
the GPIO, or takes control of the GPIO away from the AF
driver.

2 type uchar 0 RW Type of AF mechanism (lens actuator) used: 0—none,
1—helimorph, 2—stepper motor. At sequencer initialization,
this variable is set to 0 and the afm.vmt is pointed to the
default VMT of the AFM driver, which makes the GPIO
inaccessible to the AF driver. Enabling the AF driver to
control a lens actuator via the GPIO involves two steps. First,
afm.type must be set to t+128, where t is 1 or 2. Second, the
sequencer must be given REFRESH command by setting
seq.cmd to 5. The nonzero seventh bit in afm.type forces the
sequencer to call AFM_Init function upon that command. The
function makes afm.type equal to t and points afm.vmt to
the VMT through which the AFM driver methods for
controlling actuator type t can be called.

3 curPos uchar 0 RW Current logical position.
4 prePos uchar 0 RW Previous logical position.
5 status uchar 0 RW Lens actuator status:

Bit 0—0 if all is OK, 1 if the actuator reported an error
Bit 1—0 if the lens is stationary, 1 if it is moving
Bit 2—0 if direction of last lens movement was forward (+), 1
if the direction was backward (-)
Bits [4:3]—number of current stepper motor position if
afm.type=2; otherwise unused
Bits [7:5]—unused
After sending a “change lens position” command to the lens
actuator, the AFM driver sets bit 1 of afm.status to 1. The
value of the bit remains 1 until the AFM driver gets
information that the lens is not moving (either has stopped
at the desired new position or has failed to reach it). The AF
driver waits through all times when the lens is moving by
having afm.status updated once every frame, reading its bit 1
and immediately going back to sleep if it equals 1.

6 posMin uchar 0 RW Lower limit of physical position range.
7 posMax uchar 0 RW Upper limit of physical position range. Can be set below

afm.posMin to swap forward (+) and backward (-) directions
of lens motion.

8 posMacro uchar 0 RW Logical macro position.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 107 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Mechanism

Micron Confidential and Proprietary Advance
9 backlash uchar 0 RW Logical size of backlash-compensating step that the AF driver
can optionally use in lens positioning after the first scan. If
bits [7:6] of af.mode are set to 0, positioning is done by
moving the lens directly from the end position of the scan
(af.positions[af.initPos+af.numSteps-1]) to the logical
position found best (af.positions[af.initPos+af.bestPosition]).
The direction of this move is opposite to the direction of the
scan, and therefore the move may not bring the lens to its
intended physical destination, unless its logical length is
adjusted upward to compensate for lens actuator backlash.
To make this adjustment, the AF driver subtracts
afm.backlash from the value of
af.positions[af.initPos+af.bestPosition] and gives the result to
the AFM driver as the logical position to move the lens to.
Negative results of the subtraction are replaced with 0. Note
that subtracting afm.backlash makes sense only when
af.positions[af.initPos+af.numSteps-1] >
af.positions[af.initPos+af.bestPosition]; otherwise addition is
required. Since the AF driver always subtracts afm.backlash,
backlash compensation using this variable is not
recommended after scans done in the negative direction (e.g.
from logical position 255 to logical position 0).

Table 14: Public Variables of the AFM Driver (continued)

Offset Name Type Default R/W Description
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 108 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Mechanism

Micron Confidential and Proprietary Advance
10 custCtrl char 0 RW Custom controls: 1-bit option switches and fine-tuning
parameters for actuator control methods. The function of
different bits of this variable depends on the current value of
afm.type.

If afm.type = 1, then:
Bit 0—selects the length of commands sent to HD80
helimorph driver by function AFM_SetPosHelimorph (0–2
bytes, 1—3 bytes including enable byte)
Bit 1—selects one of two possible relations between the
argument of the function AFM_SetPosHelimorph, bPos, and
position byte sent to HD80 helimorph driver (0 means send
bPos, 1—send 255-bPos, to reverse the direction of lens
movement)
Bit 2—selects one of two positions that helimorph can
assume upon command to exit standby (0—afm.posMin,
1—afm.posMax),
Bits [7:3]—unused

If afm.type = 2, then:
Bit 0—selects direction of lens motion if bit 1 is set to 1,
Bit 1—determines how function AFM_SetPosStMotor
interprets its 1-byte argument (0—as desired logical lens
position, 1—as number of physical steps to make in the
direction indicated by bit 0),
Bit 2—enables periodic forcing of stepper-motor-driving
outputs into calculated logical states (0—forcing disabled,
out puts are only toggled as needed, 1—forcing enabled),
Bit 3—when set to 1, enables powering stepper motor down
after every movement (the motor is always powered up
before movements, but powering down is optional),
Bit 4—enables repositioning of stepper motor by function
AFM_ResetStMotor upon command to enter standby
(1—enable, Bit 5—enables repositioning of stepper motor by
function AFM_ResetStMotor upon command to exit standby
(1—enable, 0—disable),
Bits [7:6]—allow one to slow down initial portions of stepper-
motor-driving waveforms that cannot be entirely generated
by the MT9D111 waveform generator (higher value = slower
waveforms).
0—disable),

If afm.type = 0, afm.custCtrl is unused.
11 timer.vmt void* E9C6 RW Pointer to timer VMT. Default timer VMT located in ROM

contains pointers to the following public functions:
AFM_Wait
AFM_TimerSetDelay, AFM_TimerSetTimeToMove
AFM_TimerIsStopped

The pointers are all of type void* and have the following
names: pWait, pSetDelay, pSetTimeToMove,
pTimerIsStopped.

13 timer.startTime uint 0 RW Timer start time.
15 timer.stopTime uint 0 RW Timer stop time.

Table 14: Public Variables of the AFM Driver (continued)

Offset Name Type Default R/W Description
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 109 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Mechanism

Micron Confidential and Proprietary Advance
17 timer.hiWordMclk
Freq

uint 0 RW Master clock frequency in Hz divided by 65536. Used to
convert delay times in milliseconds (for example, the values
of afm.timer.maxShortDelay and afm.timer.maxLongDelay)
to corresponding counts of master clock cycles that can be
programmed into the timer.

19 timer.maxShortDe
lay

uint 0 RW Maximum expected duration of a short lens move in
milliseconds. Used by the AFM driver function
AFM_TimerSetTimeToMove to compute lens travel time
estimates.

21 timer.maxLongDel
ay

uint 0 RW Maximum expected duration of a long lens move in
milliseconds. Used by the AFM driver function
AFM_TimerSetTimeToMove to compute lens travel time
estimates.

23 timer.maxQuickM
ove

uchar 0 RW Maximum length of short lens move (or threshold between
short and long moves). Used by the AFM driver function
AFM_TimerSetTimeToMove to compute lens travel time
estimates.

24 timer.config uchar 0 RW Bits [1:0] of this variable determine how
afm.timer.maxShortDelay, afm.timer.maxLongDelay, and
afm.timer.maxQuickMove are used to estimate duration of
lens movements. Bits [7:2] are unused.

If a command-driven lens actuator does not provide any
feedback about its status after receiving a command to move
an AF lens, the AFM driver must somehow predict how long
the lens will be moving to prevent the AF driver from
collecting sharpness scores and issuing new commands during
its movement. The need for predictions of lens travel time is
satisfied rather inexpensively by the AFM driver function
AFM_TimerSetTimeToMove, which takes as arguments two
logical lens positions and estimates the time required to
move the lens between them. The function can use two
different estimation methods, both of which rely on three
user-set parameters, afm.timer.maxShortDelay,
afm.timer.maxLongDelay, and afm.timer.maxQuickMove, as
a sole source of information about how fast the lens actuator
moves the lens. The default method of piecewise linear
estimation is used when bit 0 of afm.timer.config is cleared.

Setting this bit to 1 enables the alternative bipolar method.
The bipolar method is very simple: if the distance between
the two logical positions given to AFM_TimerSetTimeToMove
as arguments exceeds afm.timer.maxQuickMove, then
afm.timer.maxLongDelay is selected as the proper lens travel
time estimate. Otherwise, unless the two logical positions are
the same, the estimate equals afm.timer.maxShortDelay. If
the two positions are the same, the estimate should be 0, and
indeed is 0 if bit 1 of afm.timer.config is cleared. However, if
this bit is set to 1 and the positions are the same, the function
AFM_TimerSetTimeToMove outputs
afm.timer.maxShortDelay instead of 0.
See “Timer” on page 90 or a description of the piecewise
linear estimation method.

Table 14: Public Variables of the AFM Driver (continued)

Offset Name Type Default R/W Description
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 110 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Mechanism

Micron Confidential and Proprietary Advance
25 si.vmt void* E9CE RW Pointer to serial interface VMT. Default serial interface VMT
located in ROM contains pointers to the following public
functions:
AFM_SiSendCmd,
AFM_SiSetActvFlag,
AFM_SiSendByte,
AFM_SiRecvByte.

The pointers are all of type void* and have the following
names: pSendCmd, pSetActvFlag, pSendByte, pRecvByte.

27 si.clkMask uint 0 RW Mask selecting one of the GPIO pads as the clock line of
dedicated two-wire serial interface between the MT9D111
and a lens actuator (for example, helimorph).

29 si.dataMask uint 0 RW Mask selecting one of the GPIO pads as the data line of the
dedicated two-wire serial interface to a lens actuator.

31 si.clkQtrPrd uint 0 RW Delay for slowing down serial interface transmissions. The
period of serial interface clock is asymptotically proportional
to si.clkQtrPrd.

33 si.needsAck uchar 0 RW Switch enabling detection of ACK bits from the lens actuator
(0—detection disabled, 1—enabled).

34 si.slaveAddr uchar 0 RW Lens actuator address used in serial interface transmissions.
35 sm.enabMask uint 0 RW Mask selecting one of the GPIO pads as stepper-motor-

enabling output.
37 sm.drv0Mask uchar 0 RW Mask selecting one of the GPIO pads as first stepper-motor-

driving output.
38 sm.drv1Mask uchar 0 RW Mask selecting one of the GPIO pads as second stepper-

motor-driving output.
39 sm.drv2Mask uchar 0 RW Mask selecting one of the GPIO pads as third stepper-motor-

driving output.
40 sm.drv3Mask uchar 0 RW Mask selecting one of the GPIO pads as fourth stepper-

motor-driving output.
41 sm.drvsQtrPrd uchar 0 RW Delay for lengthening the period of stepper motor driving

waveforms. The number of master/GPIO clock cycles in this
period asymptotically approaches 8 times the sm.drvsQtrPrd.

43 sm.drvsGenMode uchar 0 RW This variable tells the AFM driver how to program the GPIO
to generate stepper motor driving waveforms.
Bits [1:0]—size of smallest stepper motor move (0–4 steps, 1—
1 step, 2—2 steps)
Bit 2—if 0, use the waveform generator in 8-bit counter
mode, if 1, use it in 16-bit counter mode
Bit 3—if 0, use clock divider 1, if 1, use clock divider 2
Bits [7:4]—clock divider setting (used by the AFM driver only
if it is higher than the setting the driver has automatically
calculated).

44 sm.piEnabMask uint 0 RW Mask selecting one of GPIO pads as photointerrupter-
enabling output.

46 sm.piOutMask uint 0 RW Mask selecting one of GPIO pads as photointerrupter-sensing
input.

48 sm.piEdgeOffset uchar 0 RW Distance (in units of smallest stepper motor move) between
the position of photointerrupter signal edge and desired
initial position of stepper motor.

Table 14: Public Variables of the AFM Driver (continued)

Offset Name Type Default R/W Description
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 111 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Mechanism

Micron Confidential and Proprietary Advance
Public Functions of the AFM Driver and Corresponding VMT Pointers

void AFM_Init (void)

Pointer: afm.vmt->pInit

Description/Use: Initializes the AFM driver

void AFM_SetPos*(unsigned char bPos)

Pointer: afm.vmt->pSetPo

void AFM_ExecCmd*(BYTE bCmd)

Pointer: afm.vmt->pExecCmd

unsigned char AFM_GetStatus*(void)

Pointer: afm.vmt->pGetStatus

Description: Determines the current status of the AFM driver and lens actuator,
updates the variable afm.status accordingly and returns its value

Use: Called once, indirectly, by the AF driver function AF_Run_snapshot.
AFM_ResetStMotor and one other AFM driver function use the code line while
(AFM_GetStatusStMotor()&2); to put the MCU on hold during certain short movements
of the stepper motor.

void AFM_Wait(unsigned int wDelay)

Pointer: afm.timer.vmt->pWait

Description: Timer library function. Contains only 1 line of code:

if (wDelay) do { asm nop; asm nop; } while (--wDelay);

Each repetition of the “do” loop below takes 25 master clock cycles. The code preceding
and following the loop is executed in 26 master clock cycles. Direct JSR (jump to subrou-
tine) with address > 255 takes 6 clock cycles. The total delay caused by this function is
therefore (32+25*wDelay)*(master clock cycle).

Use: Used whenever there is a need to keep the MCU idle for a short while. Several
AFM_Si* functions (see below) contain multiple calls to AFM_Wait(afm.si.clkQtrPrd)
that make the rate of serial interface clock adjustable. The function AFM_ResetStMotor

49 sm.piConfig uchar 0 RW Photointerrupter (PI) configuration:
Bit 0—if 0, do not use PI, if 1, use it for initial stepper
positioning
Bit 1—if 0, PI signal edge is near logical position 0, if 1—near
255,
Bit 2—PI active state (0—low, 1—high)
Bit 3—if 1, PI is in the active state at initial stepper position, if
0—it is not
Bit 4—if 0, initial logical stepper position is 0, if 1—255
Bits [7:5]—delay between powering up the PI and sensing its
output the first time.

Table 14: Public Variables of the AFM Driver (continued)

Offset Name Type Default R/W Description
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 112 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Mechanism

Micron Confidential and Proprietary Advance
calls AFM_Wait(32<<(afm.sm.piConfig>>5)) to allow the photointerrupter output signal
to settle after power-up. AFM_Wait is also used to time initial portions of stepper-
motor-driving waveforms that cannot be entirely generated by the MT9D111 waveform
generator.

void AFM_TimerSetDelay(unsigned int wDelay)

Pointer: afm.timer.vmt->pSetDelay

Description: Timer library function. If wDelay > 0, activates the timer and programs it
to “tick” until the number of milliseconds equal to wDelay passes by. This is done by set-
ting afm.timer.startTime and afm.timer.stopTime to two different values dependent on
the current value of special function register sys.ClockCnt.Word.Hi (the upper word of
32-bit master clock cycle counter).

If wDelay = 0, the function stops and de-activates the timer by setting afm.timer.stop-
Time and afm.timer.startTime to 0.

AFM_TimerSetDelay uses afm.timer.hiWordMclkFreq to convert non-zero wDelay (in
milliseconds) to the corresponding number of master clock cycles. For further details,
see “Timer” on page 90.

Use: Called once, directly, by the function AFM_TimerSetTimeToMove.

void AFM_TimerSetTimeToMove(unsigned int wPos)

Pointer: afm.timer.vmt->pSetTimeToMove

Description: Timer library function. Takes as arguments two logical lens positions,
bCurPos and bNewPos, combined into a 16-bit word (wPos = 256*bNewPos+bCurPos)
and estimates the time required to move the lens between them. The function can use
two different estimation methods, both of which rely on three user-set parameters,
afm.timer.maxShortDelay, afm.timer.maxLongDelay, and afm.timer.maxQuickMove, as
a sole source of information about how fast the lens actuator moves the lens. The default
method of piecewise linear estimation is used when bit 0 of afm.timer.config is cleared.
Setting this bit to 1 enables the alternative bipolar method.

The bipolar method is very simple: if the distance between the two logical positions
given to AFM_TimerSetTimeToMove as arguments exceeds afm.timer.maxQuickMove,
then afm.timer.maxLongDelay is selected as the proper lens travel time estimate. Other-
wise, unless the two logical positions are the same, the estimate equals afm.timer.max-
ShortDelay. If the two positions are the same, the estimate should be 0, and indeed is 0 if
bit 1 of afm.timer.config is cleared. However, if this bit is set to 1 and the positions are
the same, the function AFM_TimerSetTimeToMove outputs afm.timer.maxShortDelay
instead of 0.

See “Timer” on page 90 for a description of the piecewise linear estimation method.

Use: Called once, indirectly, by function AFM_SetPosHelimorph.

void AFM_TimerSetTimeToMove(unsigned int wPos)

Pointer: afm.timer.vmt->pSetTimeToMove

Description: Timer library function. Takes as arguments two logical lens positions,
bCurPos and bNewPos, combined into a 16-bit word (wPos = 256*bNewPos+bCurPos)
and estimates the time required to move the lens between them. The function can use
two different estimation methods, both of which rely on three user-set parameters,
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 113 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Mechanism

Micron Confidential and Proprietary Advance
afm.timer.maxShortDelay, afm.timer.maxLongDelay, and afm.timer.maxQuickMove, as
a sole source of information about how fast the lens actuator moves the lens. The default
method of piecewise linear estimation is used when bit 0 of afm.timer.config is cleared.
Setting this bit to 1 enables the alternative bipolar method.

The bipolar method is very simple: if the distance between the two logical positions
given to AFM_TimerSetTimeToMove as arguments exceeds afm.timer.maxQuickMove,
then afm.timer.maxLongDelay is selected as the proper lens travel time estimate. Other-
wise, unless the two logical positions are the same, the estimate equals afm.timer.max-
ShortDelay. If the two positions are the same, the estimate should be 0, and indeed is 0 if
bit 1 of afm.timer.config is cleared. However, if this bit is set to 1 and the positions are
the same, the function AFM_TimerSetTimeToMove outputs afm.timer.maxShortDelay
instead of 0.

See “Timer” on page 90 for a description of the piecewise linear estimation method.

Use: Called once, indirectly, by function AFM_SetPosHelimorph.

BYTE AFM_TimerIsStopped(void)

Pointer: afm.timer.vmt->pTimerIsStopped

Description: Timer library function. Answers whether the timer is presently “stopped”
or “ticking” (in other words, if the delay set by AFM_TimerSetDelay is over or not). It also
automatically de-activates and resets the timer if it is stopped. Deactivation/reset is
done by setting afm.timer.startTime and afm.timer.stopTime to 0.

Use: Called once, directly, by the function AFM_GetStatusHelimorph.

void AFM_SiSendCmd(unsigned int wCmd)

Pointer: afm.si.vmt->pSendCmd

Description: Serial interface library function. Can send a 2- or 3-byte long command,
the first byte of which is always equal to afm.si.slaveAddr. The second command byte
equals the lower byte of the function's 16-bit argument, wCmd. The upper byte of wCmd
is sent next if it differs from 0xFF. If it equals 0xFF, it is discarded. The entire command is
bracketed by START and STOP bits generated by AFM_SiSetActvFlag.

Each command byte is sent using the function AFM_SiSendByte. If after sending some
byte AFM_SiSendByte returns 0 (indicating the absence of a needed ACK bit), the trans-
mission of the command is aborted and restarted from the first byte. Up to two restarts
can occur if the problem of missing ACK bits persists. The function AFM_SiSendCmd
uses afm.status variable to count the restarts and report the final result of the command
transmission. A successful transmission is indicated by afm.status = 0. If afm.status > 0,
all three attempts to send the command have failed due to the lack of acknowledgement
from the intended command recipient.

Use: Used to give two-wire serial interface commands to helimorph driver ASIC. Called
once, indirectly, by AFM_SetPosHelimorph and once, likewise indirectly, by
AFM_ExecCmdHelimorph.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 114 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Auto Focus Mechanism

Micron Confidential and Proprietary Advance
void AFM_SiSetActvFlag(unsigned char bOn)

Pointer: afm.si.vmt->pSetActvFlag

Description: Serial interface library function. Generates START and STOP bits that
bracket every two-wire serial interface transmission. If its argument bOn equals 0, it
sends a STOP bit. Any other argument value produces a START bit.

Use: Called 2 times, directly, by the function AFM_SiSendCmd.

BYTE AFM_SiSendByte(unsigned char bByte)

Pointer: afm.si.vmt->pSendByte

Description: Serial interface library function. Sends its 1-byte argument, bByte, to an
external device via two GPIO pads selected to be two-wire serial interface clock and data
lines. Returns 1 or 0, depending on whether device has responded with an ACK bit and
whether such a response is needed. If afm.si.needsAck = 1, it means that ACK is needed.
AFM_SiSendByte returns 1 upon receiving it. If it is missing, the function returns 0. If
afm.si.needsAck = 0, AFM_SiSendByte always returns 1.

Use: Called directly three times in the function AFM_SiSendCmd.

void AFM_SiRecvByte(unsigned char *pDestByte)

Pointer: afm.si.vmt->pRecvByte

Description: Serial interface library function. Receives a byte of data from an external
two-wire serial interface transmitter and stores it at the memory location pointed to by
its argument, pDestByte. It acknowledges receiving the data by sending an ACK bit back
to the transmitter.

Use: Not currently used in the MT9D111 firmware.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 115 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Mode Driver-Setting up Preview (A) and Capture (B) Modes

Micron Confidential and Proprietary Advance
Mode Driver-Setting up Preview (A) and Capture (B) Modes
The mode driver (ID=7) serves two major functions:

1. Storing local copies of image sensor and pipeline registers for both preview and cap-
ture modes so that they may be uploaded at the appropriate time between frames (to
avoid mid-frame changes)

2. Generating a gamma correction table that may be selected to include a predefined
level of contrast enhancement, thus adding contrast control to this part

The mode driver contains shadow registers for context A (preview) and context B (cap-
ture). These shadow registers upload their values to the corresponding image sensor
and pipeline control hardware registers at the proper time so as not to introduce mid-
frame changes that would cause frame corruption. These shadow registers have been
chosen to provide all foreseeable changes that a user would want to make between pre-
view and captures modes (see data sheet for affected registers for each mode driver vari-
able). There are additional preview-specific and capture-specific registers in the sensor
core (R0x05:0, R0x06:0, R0x07:0, R0x08:0, R0x20:0, R0x21:0), which are not included in
the mode driver's values.

Upon power-up the user should upload/change all non-default register values desired,
including the mode driver values. The user does not need to upload to any hardware
registers that correspond to the mode driver values because the registers are overwritten
upon initialization, a context change (preview to capture or vise versa), or a sequencer
REFRESH or REFRESH_MODE command.

The user may also change these mode driver variables at any time, but their changes are
not reflected in the images until either: (a) the user issues a REFRESH or
REFRESH_MODE command to the sequencer, (b) the user changes the sequencer state
from preview to capture or vice versa, or (c) the user issues a STANDBY sequencer com-
mand and then returns. This allows the user to change values without affecting the
immediate image processing, avoiding image corruption.

“Gamma and Contrast” on page 30 describes the mode driver’s gamma and contrast
functionality.

MT9D111 Register Wizard
The MT9D111 Register Wizard tool is a software program that allows a user to generate
the proper settings in regards to timing, PLL, state parameters, and gamma/contrast
parameters for the sensor.

After specifying the desired operating frequency, frame rate, resolution, and other
parameters, the user can save the resulting register/variable values in an INI file format
that can easily be loaded in Micron's DevWare demo software.

The tool is currently in its pre-release form and has not yet been extensively tested.
Additional features may be added in the future. Any bug reports should be reported to
your local Micron Field Applications Engineer (FAE).

Procedure
After opening the MT9D111 Register Wizard tool, the user should first go to the PLL set-
tings section to specify the input clock and PLL output frequencies (see Figure 48.)

In the first text box, enter the input clock frequency to the sensor (CLKIN). Next, enter
the targeted output frequency of the PLL in the second text box. If the text box is dis-
abled, uncheck the “Use Min Freq” checkbox. Alternatively, you can leave the “Use Min
Freq” box checked and let the tool to select the minimum PLL output frequency needed
based on the “Image Timing” section.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 116 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Mode Driver-Setting up Preview (A) and Capture (B) Modes

Micron Confidential and Proprietary Advance
The window on the right will then show the required PLL settings—set by the M, N, and
P values—to achieve the named configuration.

Figure 48: Input Clock and PLL Output Frequencies

The “Target VCO Frequency (MHz)” field allows the user to specify a target VCO fre-
quency—the frequency of one of the stages of the PLL, which has a valid range of 110 to
240 MHz. The tool limits its calculations based on this range, as well as other require-
ments—see Table 15 for more details.

The tool assumes the use of PLL. However, if the sensor is operating from the CLKIN fre-
quency directly (no PLL), follow the steps below:

1. Enter the same frequency in the “Input Frequency” and “Target System Frequency”
text boxes. The “Use Min Frequency” checkbox should be unchecked.

2. After all the parameters are set from the other sections (Image Timing, State Parame-
ters, and Gamma & Contrast), save the settings as an INI file.

3. Use a text editor to remove the following lines from the INI file.
REG = 0, 0x66, 0x**** //PLL Control 1 = ****

REG = 0, 0x67, 0x**** //PLL Control 2 = ****

Table 15: PLL Specifications

Specification Equation Min Max

M – 16 –
fPFD fIN/(N+1) 2 MHz 13 MHz
fVCO fPFD*M 110 MHz 240 MHz
fOUT fVCO/(2*(P+1)) 6 MHz 80 MHz
fIN – 6 MHz 64 MHz
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 117 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Mode Driver-Setting up Preview (A) and Capture (B) Modes

Micron Confidential and Proprietary Advance
REG = 0, 0x65, 0xA000 //Clock CNTRL: PLL ON = 40960

REG = 0, 0x65, 0x2000 //Clock CNTRL: USE PLL = 8192

Figure 49: Image Timing Section

The Image Timing section allows the user to configure the frame rate, resolution, ADC
mode, binning option, skipping option, and blanking option for each context. If the
input values are beyond specifications, the corresponding text box will be highlighted in
yellow. A warning message will also appear in the window on the right-hand side. For
example, if a user enters a frame rate that is too high, the warning message will specify
the maximum frame rate achievable based on the current operating frequency. By
default, the “Use Context A Line Time” checkbox is selected. It is necessary to match the
line (row) time for both contexts in order for the firmware drivers (such as auto expo-
sure) to function optimally.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 118 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Mode Driver-Setting up Preview (A) and Capture (B) Modes

Micron Confidential and Proprietary Advance
Figure 50: State Parameters Tab

In the State Parameters section, the user can configure the mode for each driver in the
following four states: Enter Preview, Preview, Leave Preview, and Enter Capture. The
configurable drivers are: Auto Exposure, Flicker Detection, Auto White Balance, Auto
Focus, Histogram, and Flash. There is also an option to skip a particular state by using
the associated checkbox.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 119 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Mode Driver-Setting up Preview (A) and Capture (B) Modes

Micron Confidential and Proprietary Advance
Figure 51: State Diagram and Transitions of the MT9D111

Leave
Preview

Ch.Mode
To Capture

Capture

Standby
Do Standby

Refresh IFP
Run

Enter
Capture

Leave
Capture

Do Preview
Do Capture

Ch.Mode
To Preview

Enter
Preview

Refresh Sensor

Run

Do Preview

Init

Lock

Do Preview

Do Capture
Lock

Preview
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 120 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Mode Driver-Setting up Preview (A) and Capture (B) Modes

Micron Confidential and Proprietary Advance
Figure 52: Gamma and Contrast Tab

In the final section—Gamma & Contrast—the user can select pre-defined gamma and
contrast settings. The user also has the option to program the gamma/contrast table
manually.

The available gamma options are: 1.0, 0.56, 0.45, or user-defined. Contrast options are:
100 percent (no contrast increase), 125 percent, 150 percent, 175 percent, and noise-
reduction.

For additional gamma or contrast settings, the user can modify individual data points—
see Figure 52. Data point values may range from 0 to 255.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 121 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Mode Driver-Setting up Preview (A) and Capture (B) Modes

Micron Confidential and Proprietary Advance
Figure 53: Register Output Tab

Once all the parameters are selected, the user can review all the associated register/vari-
able values in the Register Output section of the tool, as shown in Figure 53.

In order to save these settings, click the diskette icon in the tool bar. Once the INI file is
generated, it may be loaded into DevWare or converted to a different system format.

Note: DevWare/demo2 may not operate in the frequency specified by the user in the PLL
Settings section. In this case, supply an external oscillator to the demo2 system with
the same frequency that was entered in the tool.

The Register Wizard tool currently outputs register/variable values even if they have
default values, so not all settings in the INI file are necessary to program the sensor. If an
option is not modified, the user can remove the associated default register/variable set-
ting in the INI file.

Note: This tool is currently under development. The information in this manual and the
features in the Register Wizard tool are subject to change without notice. Report any
typos, errors, or bugs to your local FAE.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 122 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
MT9D111 Developer Guide Mode Driver Preview and Driver FAQs

Micron Confidential and Proprietary Advance
MT9D111 Developer Guide Mode Driver Preview and Driver FAQs
• What is the maximum frame rate that can be achieved if I use 65 MHz clock?

What is the maximum frame rate that can be achieved if I use 65 MHz clock? For 65
MHz, you can do 25 fps for QVGA (without skipping) and 12.8 fps for UXGA capture.
(The register wizard will show this information.)
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 123 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Histogram Driver

Micron Confidential and Proprietary Advance
Histogram Driver

How to Set Up the Histogram Driver Variable for Operation
The histogram driver works to reduce image flare by continually analyzing the input
image histogram and dynamically adjusting the black level, R0x59:1. When flare is
present, the image histogram does not contain dark tones, causing the driver to subtract
a higher black level, thus regaining the lost contrast (at the expense of dynamic range).
In certain situations, the scene may contain no dark tones without flare. The histogram
driver cannot distinguish this condition and alters the black level just the same, causing
the image to have more contrast, which looks acceptable in many situations.

The variable hg.maxDLevel sets the maximum level that can be subtracted from the
input data (set this value to match the lens flare percentage). For example, if a lens typi-
cally has a five percent flare, set this value to 0.05*1024 = 51. To disable flare subtraction
in all modes, set this value to 0. The maximum allowed value is 128. Read variable
hg.DLevel to see the current subtracted value. The variable hg.percent indicates the per-
centage of histogram dark tones which need to be clipped. The recommended value is 0.
The hg.DLevelBufferSpeed controls the speed of adjustment, and has a range of 32 (fast-
est) to 1 (slowest).

The histogram driver operates with two sets of bins:

• The first set of bins is programmed to calculate low signal distribution in the image
and is used to estimate black level, which should be subtracted to reduce image flare
as described previously. Variables hg.lowerLimit1 and hg.binSize1 define the first set
of bin. Variable hg.lowerLimit1 = 0 sets offset for bin0 (divided by 4 on a 10-bit scale).
Variable hg.binSize1 sets bin width (0–4LSB, 1–8LSB, 2–16LSB, 7–512LSB on a 10-bit
scale), so the first set of bins covers input signals 0–64.

• The second set of bins is programmed to calculate high signal distribution in the
image and is used to estimate the percent of oversaturated pixels. Variables
hg.lowerLimit2=192 and hg.binSize2=4 define the signal range from 768 to 1024, cov-
ered by the second histogram.

Variable hg.scaleGFactor sets the precision of histogram. If hg.scaleGFactor=1, then
reg216:2[15:18] has a maximal value = 255, if all pixels have the same value and hit into
bin1. This variable defines minimal bin resolution as 1/256 of the total number of pixels
in histogram window. If hg.scaleGFactor=2, bin resolution is 1/512, and so on.

If the user wants to change one from the variables hg.scaleGFactor, hg.lowerLimit1,
hg.binSize1, hg.lowerLimit2, or hg.binSize2, command DO_REFRESH (seq.cmd=5) has
to be called for new values have effect.

The histogram driver uses the same window as the AE driver.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 124 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Flash Strobe, Mechanical Shutter, and Global Reset

Micron Confidential and Proprietary Advance
Flash Strobe, Mechanical Shutter, and Global Reset

Still Capture using Xenon/LED Flash with User-defined Image Quality Settings
The MT9D111 supports flash mode with user predefined settings for auto exposure and
auto white balance for both Xenon and LED flashes. To capture images using predefined
settings for Xenon or LED flash, the user (host):

1. Must program the sequencer to select the appropriate flash type
2. Turn the flash on
3. Select the “load user defined settings” modes for the CaptureEnter state
4. Disable all auto functionality for the PreviewLeave, CaptureEnter, and Capture states
5. Transfer the sequencer into step-by-step mode (sequencer.stepMode[0] = 1) and call

the DO_CAPTURE command (sequencer.cmd). Wait until the sequencer comes to the
PreviewLeave state and load the white balance and exposure settings to the corre-
sponding AWB, AE, and histogram (HG) driver variables. Release the step-by-step
sequencer mode (sequencer.stepMode[0] = 0) so that the sequencer automatically
passes all states from PreviewLeave back to the Preview state.

While in the CaptureModeChange state, the sequencer changes the imaging frame size
from preview to capture. In the CaptureEnter state, the settings loaded to the driver vari-
ables in the PreviewLeave state are automatically loaded into SOC registers and the flash
is engaged.

After this, the sequencer comes back to the Capture state. During N frames (see variable
sequencer.captureParams.numFrames) when the sequencer stays in Capture state, the
user must grab a frame. After N frames in the Capture state or the DO_CAPTURE com-
mand (whichever comes first), the sequencer turns off the flash pin (if flash was enabled
for every frame), and goes back to the Preview state.

Command Sequence
• seq.sharedParams.flashType = 1 (LED) or 2(Xenon)
• seq.capParEnter.flash = 129 —enable flash and loading of the user defined settings for

“CaptureEnter” state.
• seq.capParEnter.skipframe = 32 —skip one frame after LED flash is enabled (optional,

for LED flash only)
• seq.previewParLeave.ae=0
• seq.previewParLeave.fd=0
• seq.previewParLeave.awb=0
• seq.previewParLeave.hg=0
• seq.previewParLeave.flash=0 —disable all auto functionality for PreviewLeave states
• seq.capParEnter.ae=0
• seq.capParEnter.fd=0
• seq.capParEnter.awb=0
• seq.capParEnter.hg=0 —disable all auto functionality for “CaptureEnter” states
• seq.captureParams.mode = 0 —disable all auto functionality for Capture states
• seq.captureParams.numFrames = 1 —specify how many frames sequencer should

stay in Capture state
• seq.stepMode = 3 —set step-by-step sequencer mode and let to do next step
• seq.cmd = 2 —call DO_CAPTURE command
• wait until seq.mode = 4 —wait until sequencer comes to PreviewLeave state.
• for (i=0; i<11; i++)
• awb.ccm[i] = ud_ccm[i]; —load user defined (ud) color correction matrix
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 125 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Flash Strobe, Mechanical Shutter, and Global Reset

Micron Confidential and Proprietary Advance
• awb.GainR = ud_GainR;
• awb.GainG = ud_GainG;
• awb.GainB = ud_GainB; —load ud digital WB gains
• ae.VirtGain = ud_VirtGain; —load ud virtual analog gain
• ae.DGainAE1 = DGainAE1; —AE digital gain1
• ae.DGainAE2 = DGainAE2; —AE digital gain2
• ae.R9 = ud_IT; —integration time
• ae.R65 = ud_R65; —ADC reference
• hg.DLevel = ud_DLevel; —dark level
• seq.stepMode = 2 —release step-by-step sequencer mode
• wait until seq.mode == 7 and capture frame

Figure 54: LED Flash Timing Diagram
.

Note: Parameters: integration time = one frame. Skip one frame after LED is ON. One frame in
Capture state. Same frame size for Preview and Capture modes.

Figure 55: Xenon Flash Timing Diagram

Note: Parameters: integration time = one frame. One frame in Capture state. Same frame size
for Preview and Capture modes.

Still Capture using LED Flash with Automatic White Balance and Exposure Control
The MT9D111 supports LED flash mode with automatic white balance and exposure
control. The sequencer can be programmed to make fast AE and AWB calculations for a
scene illuminated by an LED flash in the PreviewLeave and CaptureEnter states. (Calcu-
lating AE and AWB in PreviewLeave state rather than CaptureEnter state is recom-
mended because the frame rate is usually faster in preview mode.)

Use the following steps to capture an image using AWB and AE:

1. Program the sequencer to select the LED flash type

3

7

2
1

36
5

4

Frame_Valid

Seq.state

Flash Strobe

3

7

2
1

3

6
5

4

Frame_Valid

Seq.state

Flash Strobe
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 126 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Flash Strobe, Mechanical Shutter, and Global Reset

Micron Confidential and Proprietary Advance
2. Turn on the flash in the PreviewLeave and CaptureEnter states
3. Enable the desired automatic functions in the PreviewLeave state, and disable them

in the CaptureEnter and Capture states
4. Specify how many frames the sequencer should stay in the Capture state. Call the

DO_CAPTURE sequencer command, wait until sequencer comes to the Capture state,
and grab the appropriate frame.

After receiving the DO_CAPTURE command, the sequencer changes to the Pre-
viewLeave state (step 4), enables the LED flash, and calculates the AE and AWB values.
These calculations take one to seven frames.

Command sequence
• seq.sharedParams.flashType = 1 (LED)
• seq.previewParLeave.ae = 1
• seq.previewParLeave.fd = 0
• seq.previewParLeave.awb = 1
• seq.previewParLeave.hg = 1 —enable all auto functionality for PreviewLeave states
• seq.previewParLeave.flash = 1 —enable flash for PreviewLeave state.
• seq.previewParLeave.skipframe = 32 —skip one frame after LED flash is enabled

(optional, for LED flash only)
• seq. capParEnter.ae = 0
• seq. capParEnter.fd = 0
• seq. capParEnter.awb = 0
• seq. capParEnter.hg = 0 —disable all auto functionality for CaptureEnter states
• seq.capParEnter.flash = 1 —enable flash for CaptureEnter state.
• seq.captureParams.mode = 0 —disable all auto functionality for Capture states
• seq.captureParams.numFrames = 1 —specify how many frames sequencer should

stay in Capture state
• seq.cmd = 2 —call DO_CAPTURE command
• wait until seq.mode == 7 and capture frame

Figure 56: LED Flash Timing Diagram with Automatic Exposure and White Balance

Note: Same frame size for Preview and Capture modes.

3

7

2
1

3
6

5
4

Frame_Valid

Seq.state

Flash Strobe
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 127 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Flash Strobe, Mechanical Shutter, and Global Reset FAQs

Micron Confidential and Proprietary Advance
Flash Strobe, Mechanical Shutter, and Global Reset FAQs
• For flash LED applications, what is the proper sequence for the flash light to be

turned on before a frame is captured?
• We are considering using the CMOS sensor to detect the ambient light for the pur-

pose of auto-flash application. Can you tell me which register contains the luminance
value from the sensor? How do we convert the luminance to lux and what’s the accu-
racy?

For flash LED applications, what is the proper sequence for the flash light to be turned
on before a frame is captured? Assuming that the customer is going from preview to
capture mode for the flash capture, the proper sequence should be:

1. In Preview (seq.state=3)
2. Turn on flash
3. Send command to switch to context B
4. Turn off flash when seq.state=8 or 1, 2, 3

We are considering using the CMOS sensor to detect the ambient light for the purpose
of auto-flash application. Can you tell me which register contains the luminance value
from the sensor? How do we convert the luminance to lux and what’s the accuracy?
There is a firmware variable (ae.mmMeanEV, ID=2 Offset=78, 8-bit variable) that pro-
vides an “EV” score. It is the mean of five EV zones. There is no straight conversion from
this score to lux. Determining when the host should turn on the flash (that is, which EV
values require flash) calls for some experimentation and optimization on the customer’s
side.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 128 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
GPIOs

Micron Confidential and Proprietary Advance
GPIOs

Programming GPIO Outputs
To program the GPIO, set the desired GPIOs to outputs and then assign the values for
them to output. The following code shows how to drive a logic 1 out of GPIO[0]. In this
example, the GPIO registers are programmed via the two-wire serial interface.

// Example: set GPIO[0]=1

R0xC6:1=0x9079// GPIO_DIR_L at 0x1079

R0xC8:1=0x00FE// Configure GPIO[0] is output

R0xC6:1=0x9071// GPIO_DATA_L at 0x1071

R0xC8:1=0x0001// Set GPIO[0]=1

Reading GPIO Inputs
To read the values of the GPIO (outputs and inputs), read from GPIO registers
GPIO_DATA_H/L at 0x1070/1. The status of the output for the GPIOs are defined as out-
puts, and the input values for the GPIOs defined as inputs are read.

Outputting Flash and/or Strobe from GPIO
In 10-bit sensor bypass mode (register 9:1[1:0] = 00), strobe and flash are output from
GPIO[10] and GPIO[11] pins, respectively. Also, flash is output from GPIO[11] if register
9:1[4:3] = 01. Strobe is output on GPIO[10] if register 81:1[0] = 1.

Waveform Generator Programming Example
This example uses physical access to variables to program the waveform generator. The
waveform generator can also be programmed directly from the microcontroller.

// Example: set GPIO[0] to be a waveform with five parts per period

640 clocks high 1280 clocks low 1280 clocks high 1280 clocks low 640 clocks high

R0xC6:1=0x907F// GPIO_DIR_OUT_L at 0x107F

R0xC8:1=0x0001// Configure GPIO[0] as output

R0xC6:1=0x9071// GPIO_DATA_L at 0x1071

R0xC8:1=0x0001// Set GPIO[0]=1 (set initial value of waveform)

//by default, clock divider is 21=2

R0xC6:1=0x90B2// GPIO_WG_CLKDIV at 0x10B2

R0xC8:1=0x0002// Set clock divider to 2^3=8

R0xC6:1=0x9081// GPIO_WG_T00

R0xC8:1=0x0050// set count of first waveform subperiod to be 0x50 (divided)
clocks

R0xC6:1=0x9083// GPIO_WG_T10

R0xC8:1=0x00A0// set count of second waveform subperiod

//having more than two waveform subperiods is optional

R0xC6:1=0x9085// GPIO_WG_T20

640 1280 1280 1280 640
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 129 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
GPIOs

Micron Confidential and Proprietary Advance
R0xC8:1=0x00A0// set count of third waveform subperiod

R0xC6:1=0x9087// GPIO_WG_T30

R0xC8:1=0x00A0// set count of fourth waveform subperiod

R0xC6:1=0x9089// GPIO_WG_T40

R0xC8:1=0x0050// set count of fifth waveform subperiod

//If this register is set to 0, waveform will run forever

R0xC6:1=0x908B// GPIO_WG_N0

R0xC8:1=0x0005// waveform will repeat for five periods

R0xC6:1=0x90B6// GPIO_WG_SUSPEND

R0xC8:1=0x0001// suspend the waveform for GPIO[0]

R0xC6:1=0x90B5// GPIO_WG_RESET

R0xC8:1=0x0001// reset the waveform state machine for GPIO[0]

R0xC6:1=0x90B0// GPIO_WG_CONFIG

R0xC8:1=0x0001// enable the waveform for GPIO[0]

// This enables the waveform in manual mode. Instead of a manual trigger, the
waveform generator can be set up to trigger on each falling edge of frame valid
by setting the proper bits in register 0x10B4 (GPIO_WG_FRAME_SYNC), each rising
edge of strobe by setting the proper bits in register 0x10BD
(GPIO_WG_STROBE_SYNC), or at the end of the higher GPIO waveform by setting the
proper bits of 0x10B1 (GPIO_WG_CHAIN)

R0xC6:1=0x90B5// GPIO_WG_RESET

R0xC8:1=0x0000// deassert reset

R0xC6:1=0x90B6// GPIO_WG_SUSPEND

R0xC8:1=0x0000// deassert suspend

R0xC6:1=0x908B// GPIO_WG_N0

read R0xC8:1// read back current value of the period counter
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 130 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
GPIO FAQs

Micron Confidential and Proprietary Advance
GPIO FAQs
• How do you set the GPIO to output pin of the following registers:

GPIO_DIR_IN_H(ADDR 0x107C), GPIO_DIR_IN_L(ADDR 0x107D),
GPIO_DIR_OUT_H(ADDR 0x107E), GPIO_DIR_OUT_L(ADDR 0x107F)?

• If GPIO ports are not used: 1. Is the power supply to VDDGPIO needed or not? 2. If
power supply to VDDGPIO is not needed, should the VDDGPIO pin (pad) be con-
nected to GND or not? 3. Should the GPIO pin (pad) be pull-up / pull-down / open?

How do you set the GPIO to output pin of the following registers:
GPIO_DIR_IN_H(ADDR 0x107C), GPIO_DIR_IN_L(ADDR 0x107D),
GPIO_DIR_OUT_H(ADDR 0x107E), GPIO_DIR_OUT_L(ADDR 0x107F)? To enable
GPIO pads as input or output, use:

GPIO_DIR_H (address 0x1078):

• Controls GPIO[11:8] pads direction. 1=input, 0=output.
• Upon power-on reset, all GPIO are inputs.

GPIO_DIR_L (address 0x1079):

• Controls GPIO[7:0] pads direction. 1=input, 0=output.
• Upon power-on reset, all GPIO are inputs.

For example, to set GPIO[0] as an output, set:

• R0xC6:1=0x9079// GPIO_DIR_L at 0x1079
• R0xC8:1=0x00FE// Configure GPIO[0] as output

If GPIO ports are not used: 1. Is the power supply to VDDGPIO needed or not? 2. If
power supply to VDDGPIO is not needed, should the VDDGPIO pin (pad) be connected
to GND or not? 3. Should the GPIO pin (pad) be pull-up / pull-down / open? We rec-
ommend leaving VDDGPIO connected to power to avoid ESD problems. If the customer
does not use any GPIO pins, doing so will not consume much power. Therefore, do not
connect VDDGPIO to ground.

As for the GPIO pins, they are set as inputs by default. The customer can either configure
them all as outputs (leave floating) or just tie them all to ground (as inputs).
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 131 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Using the Test Patterns

Micron Confidential and Proprietary Advance
Using the Test Patterns
The MT9D111 allows predefined test images to be loaded into the beginning of the
image processor, replacing the live pixel readout of the imager. This provides a static
image for testing the various image processing algorithms and function blocks indepen-
dent of the scene data.

The test patterns are enabled by working with registers 72:1 through 75:1.
Manipulating72:1[0:2] allows for the selection of the following test patterns:

001—flat field; RGB values are specified in R73–75:1

010—vertical monochrome ramp

011—vertical color bars

100—vertical monochrome bars; set bar intensity in R73:1 and R74:1

101—pseudo-random test pattern

110—horizontal monochrome bars; set bar intensity in R73:1 and R74:1

111—white background

Disabling All Firmware Drivers
Although the firmware drivers may be disabled in the sequencer, their values may still
automatically upload to the image processing hardware registers at the end of each
frame, thus overwriting attempts to manually control the image processing hardware or
the sensor’s timing controls (shutter time, for example).

To disable all firmware drivers from changing the hardware registers, the microcontrol-
ler must be commanded to stop executing any firmware:

• Set R195:1[3] to 1 (puts microcontroller in “safe mode”)
• Set R195:1[1] to 1 (resets current execution of firmware)

Use the following procedure to resume firmware execution (reboot):

• Set R195:1[3] to 0 (puts microcontroller in “normal mode”)
• Set R195:1[1] to 0 (reboots execution of firmware)
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 132 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
JPEG Functionality

How to Enable/Disable the JPEG Output
JPEG output is only available in capture mode (Context B). To enable JPEG output, set
mode.mode_config[5] = 0. To disable JPEG output, set mode.mode_config[5] = 1.
Enabling or disabling JPEG takes effect only when the MT9D111 is switched to capture
mode.

Due to the instantaneous change nature of JPEG data rate, we recommend enabling the
variable output clock rate when capturing JPEG compressed data by setting
mode.fifo_conf0_B[6] = 1. This makes the output clock run at a lower frequency when
output FIFO occupancy is low and at a higher frequency when output FIFO occupancy is
high, avoiding FIFO overflow.

However, when capturing uncompressed data, we recommend disabling the variable
output clock rate (mode.fifo_conf0_B[6] = 0) and setting PCLK divisor N1
(mode.fifo_conf1_B[3:0]) to less than or equal to the image width decimating ratio, due
to the constant data rate. For example, if output image width is decimated from 1600 to
800, set mode.fifo_conf1_B[3:0] = 2.

How to Set the JPEG Color Format
The MT9D111 supports YCbCr 4:2:2, YCbCr 4:2:0, and monochrome for JPEG. The color
format is specified by jpeg.format (0 = YCbCr 4:2:2, 1 = YCbCr 4:2:0, 2 = monochrome).

The minimum image resolution for all color formats is 8 x 8. The maximum image width
for YCbCr 4:2:0 is 384. There is no other limitation on image resolution.

How to Set the Restart Marker Interval
The MT9D111 can insert restart markers into the JPEG data stream. The restart marker
interval is specified by jpeg.restartInt. Setting this variable to 0 disables restart marker
insertion.

How to Get the JPEG Status
There are two ways to get JPEG status:

1. In spoof mode, the JPEG status byte is always appended to the end of the JPEG data
stream. In continuous mode, the appending of JPEG status byte can be optionally
enabled by setting mode.fifo_conf0_B[9] = 1.

2. Read R2:2[7:0]
Care should be taken when reading R2:2. The JPEG status in R2:2 is cleared by the JPEG
driver shortly after JPEG data transfer from output FIFO is completed if the next frame is
going to be JPEG encoded. However, the user can set jpeg.config[1] = 1 to keep the JPEG
driver from clearing the status of an unsuccessful JPEG frame until jpeg.config[3] is set
by the user.

Bit 7:6 of status indicates which set of quantization tables is used for the current frame
JPEG encoding. Bit 7:6 = 0 means first set, 1 means second set, and 2 means third set.

How to Get the JPEG Data Length
There are two ways to get JPEG data length:

1. In spoof mode, the three JPEG data length bytes (in the order of LSB to MSB) are out-
put right before JPEG status byte at the end of the JPEG data stream.

2. Read jpeg.dataLengthMSB and jpeg.dataLengLSBs; they are bit 23:16 and bit 15:0 of
the JPEG data length, respectively.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 133 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
How to Handle the JPEG Errors
If any of the JPEG error flags (bit 3:1 of JPEG status) are set, the received JPEG frame
should be discarded. In single frame still JPEG capture, the MT9D111 can be configured
to encode the next frame when an error occurs by setting jpeg.config[2] = 1. In multiple
frame still JPEG capture or video JPEG capture, it continually encodes subsequent
frames until the specified number of still JPEG frames are successfully captured or video
JPEG capture is terminated by a user command.

If jpeg.config[5] = 1, the JPEG driver automatically selects another set of quantization
tables for next frame JPEG encoding when an error occurs by rolling through the three
sets of quantization tables in the order of first, second, third, first, and so on. The first set
of quantization tables is always used for the first frame of each JPEG capture command.

If jpeg.config[5] = 0, the user is responsible to specify the quantization table by setting
jpeg.config[7:6] for every frame.

If desired, the user can enable handshaking at every erroneous JPEG frame by setting
jpeg.config[1] = 1; which halts JPEG encoding after an erroneous JPEG frame until
jpeg.config[3] is set to 1. This provides time for the user to handle the erroneous JPEG
frame and react to the error condition, such as setting new quantization table scaling
factor, loading new customized quantization tables, changing spoof frame size, etc. This
could also cause frame loss if the user does not set jpeg.config[3] quickly enough, or ter-
minate JPEG capture altogether if jpeg.config[3] is not set within the number of frames
specified in jpeg.timeoutFrames.

How to Read/Write the JPEG Quantization/Huffman Table Memories
JPEG quantization and Huffman table memories can be accessed through the JPEG Indi-
rect Access Control Register R30:2 and the JPEG Indirect Access Data Register R31:2.

Example: read quantization table 0 memory starting from address 0x80

• Set R30:2 = 0x8080 (bit 15 = 1 indicates address auto-increment)
• Read R31:2 repeatedly returns contents of memory address 0x80, 0x81, 0x82, …

Example: write quantization table 0 memory starting from address 0x80

• Set R30:2 = 0xC080
• Write R31:2 repeatedly writes to memory address 0x80, 0x81, 0x82, …

How to Program the Quantization Table
The MT9D111 can store up to three sets of quantization tables; each set consists of one
table for luma and one for chroma. There are two ways to program quantization tables:
scaled version of standard quantization tables in JPEG specification and customized
quantization tables.

Scaled Standard Quantization Table
To have the JPEG driver program scaled version of standard quantization tables, write
the desired scaling factor to bit 6:0 of the JPEG driver variables jpeg.qscale1,
jpeg.qscale2, jpeg.qscale3, and 1 to bit 7 of the qscale variable. Quantization table scal-
ing factor can be changed any time, even during JPEG capture (the new value takes
effect after the current frame JPEG encoding is finished).

Example: set scaling factor of the first set of quantization tables to 8

• set jpeg.config[4] = 1
• set jpeg.qscale1 = 0x88
The calculation of the scaled version of standard quantization tables is as follows:

• scaled_Q = (scaling_factor * sandard_Q + 16) >> 5
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 134 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
The value of scaled_Q is clipped to [1, 255]. The standard quantization tables are tables
K.1 and K.2 of the ISO/IEC 10918-1 Specification (duplicated in Table 16 and Table 17
for convenience).

Table 16: Luminance Quantization

Table 17: Chrominance Quantization

Customized Quantization Table
Customized quantization tables can be loaded into quantization memory through JPEG
Indirect Access Control Register R30:2 and JPEG Indirect Access Data Register R31:2.
The address of quantization memory is mapped to indirect registers 0x080 through
0x1FF.

Table 18: Quantization Address Map

The 14-bit floating-point reciprocal of the 8-bit quantization table value should be
loaded into quantization memory in zigzag order. The reciprocal value can be found
from the following lookup table.

const unsigned int Quant_Reciprocal_Lookup[256] =

{

0x0000, 0x0001, 0x0400, 0x02ab, 0x0200, 0x0b33, 0x0155, 0x0a49,

0x0100, 0x09c7, 0x00cd, 0x12e9, 0x0955, 0x093b, 0x1249, 0x0911,

0x0080, 0x08f1, 0x11c7, 0x11af, 0x08cd, 0x08c3, 0x08ba, 0x08b2,

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

Indirect Register Address Quantization Table

0x080 – 0x0BF 1st set luminance quantization table (table 0)
0x0C0 – 0x0FF 1st set chrominance quantization table (table 1)
0x100 – 0x13F 2nd set luminance quantization table (table 2)
0x140 – 0x17F 2nd set chrominance quantization table (table 3)
0x180 – 0x1BF 3rd set luminance quantization table (table 4)
0x1C0 – 0x1FF 3rd set chrominance quantization table (table 5)
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 135 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
0x1155, 0x251f, 0x113b, 0x1a5f, 0x1a49, 0x1a35, 0x1111, 0x2421,

0x0880, 0x23e1, 0x10f1, 0x10ea, 0x19c7, 0x19bb, 0x19af, 0x10d2,

0x10cd, 0x231f, 0x10c3, 0x197d, 0x10ba, 0x10b6, 0x10b2, 0x22b9,

0x1955, 0x229d, 0x10a4, 0x2d05, 0x193b, 0x1935, 0x225f, 0x1095,

0x2249, 0x223f, 0x2235, 0x2c57, 0x1911, 0x2219, 0x1084, 0x1082,

0x1080, 0x18fc, 0x18f8, 0x21e9, 0x18f1, 0x21db, 0x18ea, 0x2b9b,

0x21c7, 0x21c1, 0x21bb, 0x21b5, 0x21af, 0x2b53, 0x18d2, 0x367b,

0x18cd, 0x2b29, 0x18c8, 0x218b, 0x18c3, 0x2b03, 0x217d, 0x2af1,

0x18ba, 0x18b8, 0x18b6, 0x18b4, 0x18b2, 0x2ac1, 0x2ab9, 0x2159,

0x2155, 0x3547, 0x2a9d, 0x214b, 0x18a4, 0x2a89, 0x2141, 0x189f,

0x213b, 0x189c, 0x2135, 0x34c9, 0x2a5f, 0x2a59, 0x1895, 0x349d,

0x2a49, 0x1891, 0x2a3f, 0x211d, 0x2a35, 0x188c, 0x2a2b, 0x344d,

0x2111, 0x343b, 0x2a19, 0x2a15, 0x1884, 0x3419, 0x1882, 0x1881,

0x1880, 0x20fe, 0x20fc, 0x33e9, 0x20f8, 0x3fb3, 0x29e9, 0x33cb,

0x20f1, 0x33bd, 0x29db, 0x33af, 0x20ea, 0x29d1, 0x20e7, 0x3395,

0x29c7, 0x20e2, 0x29c1, 0x20df, 0x29bb, 0x20dc, 0x29b5, 0x20d9,

0x29af, 0x3359, 0x3353, 0x29a7, 0x20d2, 0x3343, 0x299f, 0x20ce,

0x20cd, 0x2997, 0x3329, 0x20c9, 0x20c8, 0x298d, 0x298b, 0x3311,

0x20c3, 0x3e0f, 0x3303, 0x3dfd, 0x297d, 0x297b, 0x2979, 0x32ed,

0x20ba, 0x3dc9, 0x20b8, 0x20b7, 0x20b6, 0x20b5, 0x20b4, 0x20b3,

0x20b2, 0x3d89, 0x20b0, 0x32bd, 0x295d, 0x3d6b, 0x2959, 0x2957,

0x2955, 0x32a7, 0x20a9, 0x20a8, 0x20a7, 0x3299, 0x294b, 0x3293,

0x20a4, 0x20a3, 0x3289, 0x2943, 0x2941, 0x3cff, 0x209f, 0x3279,

0x293b, 0x3273, 0x209c, 0x326d, 0x2935, 0x3ccf, 0x2099, 0x3cc3,

0x325f, 0x2097, 0x3259, 0x3cad, 0x2095, 0x3251, 0x2927, 0x2093,

0x3249, 0x3c8d, 0x2091, 0x3c83, 0x323f, 0x3c79, 0x291d, 0x3c6f,

0x3235, 0x3c65, 0x208c, 0x2917, 0x208b, 0x3229, 0x3227, 0x3c49,

0x2911, 0x2088, 0x290f, 0x3c37, 0x3219, 0x3217, 0x3215, 0x3c25,

0x2084, 0x3c1d, 0x2083, 0x2905, 0x2082, 0x2903, 0x2081, 0x2901

};

How to Translate between Qscale and Quality Factor
Quantization tables are computed as follows:

Qtable = (standard_qtable * qscale + 16) / 32;

In the ubiquitous JPEG quality factor case:
if (quality < 50)

 quality = 5000/quality;

else

 quality = 200 - 2*quality;

Qtable = (standard_qtable * quality + 50) / 100;

So from there, we can derive:
if (quality < 50)

 qscale = 1600 / quality;
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 136 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
else

 qscale = 16 * (100 - quality) / 25;

Since qscale is 7-bit, the maximum value is 127, which implies the minimum quality is
13 (very poor quality—such a low setting should never be necessary).

The quality factor for the default qscale is as follows:

• qscale1 = 6 --> quality = 90.625 (or 91)
• qscale2 = 9 --> quality = 85.937 (or 86)
• qscale3 = 12 --> quality = 81.25 (or 81)

How to Program the Customized Huffman Table
The MT9D111 can store two sets of Huffman DC and AC tables (one each for luma and
chroma). The standard Huffman tables K.3 and K.4 in the ISO/IEC 10918-1 Specification
are programmed into Huffman memory by the JPEG driver. These standard Huffman
tables can be overwritten by customized Huffman tables through the JPEG Indirect
Access Control Register R30:2 and the JPEG Indirect Access Data Register R31:2.

Each AC table contains 176 12-bit words; each DC table contains 16 12-bit words. The
memory map of the Huffman memory is shown in Table 19.

Each Huffman code is stored as a record containing the actual code and its length, as
shown in the Table 20.

HLEN is the number of bits in the Huffman code—HCODE—minus 1.

HCODE are the eight least-significant bits of the Huffman code. If the Huffman code is
less than 8 bits long, the bits not used must be 0.

Although Huffman codes used in the JPEG encoding can be up to 16 bits long, when the
code is more than 8 bits long, the most significant bits are always 1. Thus it is unneces-
sary to specify more than 8 bits for any code, as the most significant bits are generated
internally within the MT9D111.

In the case of the JPEG baseline algorithm, 162 Huffman codes are required for the
encoding of the AC run-length codes and 12 Huffman codes are required for the encod-
ing of the DC coefficients. The location of the Huffman codes for the 162 run-length
codes in an AC table is shown in Table 21.

Table 19: Huffman Memory Map

First Address Last Address Table

0 175 AC Huffman Table 0
176 351 AC Huffman Table 1
352 367 DC Huffman Table 0
368 383 DC Huffman Table 1

Table 20: Structure of Huffman Code in Huffman Memory

11 10 9 8 7 6 5 4 3 2 1 0
HLEN HCODE
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 137 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
The location of the Huffman codes for the 12 codes in each DC table is shown in
Table 22.

The address of Huffman memory 0 through 383 is mapped to indirect registers 0x200
through 0x37F.

How to Append the JPEG Header
The MT9D111 outputs the entropy-coded data segments of JPEG data without a header.
The user is responsible for adding all JPEG markers except the restart marker. To gener-
ate a complete JPEG file in JFIF format, the following JPEG header markers must be
added to the beginning of JPEG data:

• Start of image
• JFIF APP0
• Define quantization table
• Start of frame
• Define Huffman table
• Define restart interval
• Start of scan

Table 21: Location of AC Huffman Codes in Huffman Memoy

Address Value

0 – 9 Huffman code of run lengths 0/1 to 0/A
10 – 19 Huffman code of run lengths 1/1 to 1/A
20 – 29 Huffman code of run lengths 2/1 to 2/A
30 – 39 Huffman code of run lengths 3/1 to 3/A
40 – 49 Huffman code of run lengths 4/1 to 4/A
50 – 59 Huffman code of run lengths 5/1 to 5/A
60 – 69 Huffman code of run lengths 6/1 to 6/A
70 – 79 Huffman code of run lengths 7/1 to 7/A
80 – 89 Huffman code of run lengths 8/1 to 8/A
90 – 99 Huffman code of run lengths 9/1 to 9/A

100 – 109 Huffman code of run lengths A/1 to A/A
110 – 119 Huffman code of run lengths B/1 to B/A
120 – 129 Huffman code of run lengths C/1 to C/A
130 – 139 Huffman code of run lengths D/1 to D/A
140 – 149 Huffman code of run lengths E/1 to E/A
150 – 159 Huffman code of run lengths F/1 to F/A

160 Huffman code of EOB
161 Huffman code of ZRL

162 – 167 0xFFF
168 – 175 0xFD0 – 0xFD7

Table 22: Location of DC Huffman Codes in Huffman Memory

Address Value

0 – 11 Huffman code of DC codes 0 to A
12 – 15 Not used
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 138 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
For the details of JPEG header markers, see the following section on Sample C Code. At
the end of JPEG data, an end of image marker (0xFFD9) should be appended.

Sample C Code
The following sample C code is Micron Proprietary and Confidential.

DO NOT DISTRIBUTE. All or part of the code subject to change

©2005, Micron Technology, Inc. All rights reserved.

#define FORMAT_YCBCR4220

#define FORMAT_YCBCR4201

#define FORMAT_MONOCHROME2

// JEPG tables

unsigned char JPEG_StdQuantTblY_ZZ[64] =

{

16, 11, 12, 14, 12, 10, 16, 14,

13, 14, 18, 17, 16, 19, 24, 40,

26, 24, 22, 22, 24, 49, 35, 37,

29, 40, 58, 51, 61, 60, 57, 51,

56, 55, 64, 72, 92, 78, 64, 68,

87, 69, 55, 56, 80, 109, 81, 87,

95, 98, 103, 104, 103, 62, 77, 113,

 121, 112, 100, 120, 92, 101, 103, 99

};

unsigned char JPEG_StdQuantTblC_ZZ[64] =

{

17, 18, 18, 24, 21, 24, 47, 26,

26, 47, 99, 66, 56, 66, 99, 99,

99, 99, 99, 99, 99, 99, 99, 99,

99, 99, 99, 99, 99, 99, 99, 99,

99, 99, 99, 99, 99, 99, 99, 99,

99, 99, 99, 99, 99, 99, 99, 99,

99, 99, 99, 99, 99, 99, 99, 99,

99, 99, 99, 99, 99, 99, 99, 99

};

unsigned int JPEG_StdHuffmanTbl[384] =

{

0x100, 0x101, 0x204, 0x30b, 0x41a, 0x678, 0x7f8, 0x9f6,

0xf82, 0xf83, 0x30c, 0x41b, 0x679, 0x8f6, 0xaf6, 0xf84,

0xf85, 0xf86, 0xf87, 0xf88, 0x41c, 0x7f9, 0x9f7, 0xbf4,

0xf89, 0xf8a, 0xf8b, 0xf8c, 0xf8d, 0xf8e, 0x53a, 0x8f7,

0xbf5, 0xf8f, 0xf90, 0xf91, 0xf92, 0xf93, 0xf94, 0xf95,

0x53b, 0x9f8, 0xf96, 0xf97, 0xf98, 0xf99, 0xf9a, 0xf9b,

0xf9c, 0xf9d, 0x67a, 0xaf7, 0xf9e, 0xf9f, 0xfa0, 0xfa1,

0xfa2, 0xfa3, 0xfa4, 0xfa5, 0x67b, 0xbf6, 0xfa6, 0xfa7,

0xfa8, 0xfa9, 0xfaa, 0xfab, 0xfac, 0xfad, 0x7fa, 0xbf7,

0xfae, 0xfaf, 0xfb0, 0xfb1, 0xfb2, 0xfb3, 0xfb4, 0xfb5,

0x8f8, 0xec0, 0xfb6, 0xfb7, 0xfb8, 0xfb9, 0xfba, 0xfbb,

0xfbc, 0xfbd, 0x8f9, 0xfbe, 0xfbf, 0xfc0, 0xfc1, 0xfc2,

0xfc3, 0xfc4, 0xfc5, 0xfc6, 0x8fa, 0xfc7, 0xfc8, 0xfc9,
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 139 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
0xfca, 0xfcb, 0xfcc, 0xfcd, 0xfce, 0xfcf, 0x9f9, 0xfd0,

0xfd1, 0xfd2, 0xfd3, 0xfd4, 0xfd5, 0xfd6, 0xfd7, 0xfd8,

0x9fa, 0xfd9, 0xfda, 0xfdb, 0xfdc, 0xfdd, 0xfde, 0xfdf,

0xfe0, 0xfe1, 0xaf8, 0xfe2, 0xfe3, 0xfe4, 0xfe5, 0xfe6,

0xfe7, 0xfe8, 0xfe9, 0xfea, 0xfeb, 0xfec, 0xfed, 0xfee,

0xfef, 0xff0, 0xff1, 0xff2, 0xff3, 0xff4, 0xff5, 0xff6,

0xff7, 0xff8, 0xff9, 0xffa, 0xffb, 0xffc, 0xffd, 0xffe,

0x30a, 0xaf9, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff,

0xfd0, 0xfd1, 0xfd2, 0xfd3, 0xfd4, 0xfd5, 0xfd6, 0xfd7,

0x101, 0x204, 0x30a, 0x418, 0x419, 0x538, 0x678, 0x8f4,

0x9f6, 0xbf4, 0x30b, 0x539, 0x7f6, 0x8f5, 0xaf6, 0xbf5,

0xf88, 0xf89, 0xf8a, 0xf8b, 0x41a, 0x7f7, 0x9f7, 0xbf6,

0xec2, 0xf8c, 0xf8d, 0xf8e, 0xf8f, 0xf90, 0x41b, 0x7f8,

0x9f8, 0xbf7, 0xf91, 0xf92, 0xf93, 0xf94, 0xf95, 0xf96,

0x53a, 0x8f6, 0xf97, 0xf98, 0xf99, 0xf9a, 0xf9b, 0xf9c,

0xf9d, 0xf9e, 0x53b, 0x9f9, 0xf9f, 0xfa0, 0xfa1, 0xfa2,

0xfa3, 0xfa4, 0xfa5, 0xfa6, 0x679, 0xaf7, 0xfa7, 0xfa8,

0xfa9, 0xfaa, 0xfab, 0xfac, 0xfad, 0xfae, 0x67a, 0xaf8,

0xfaf, 0xfb0, 0xfb1, 0xfb2, 0xfb3, 0xfb4, 0xfb5, 0xfb6,

0x7f9, 0xfb7, 0xfb8, 0xfb9, 0xfba, 0xfbb, 0xfbc, 0xfbd,

0xfbe, 0xfbf, 0x8f7, 0xfc0, 0xfc1, 0xfc2, 0xfc3, 0xfc4,

0xfc5, 0xfc6, 0xfc7, 0xfc8, 0x8f8, 0xfc9, 0xfca, 0xfcb,

0xfcc, 0xfcd, 0xfce, 0xfcf, 0xfd0, 0xfd1, 0x8f9, 0xfd2,

0xfd3, 0xfd4, 0xfd5, 0xfd6, 0xfd7, 0xfd8, 0xfd9, 0xfda,

0x8fa, 0xfdb, 0xfdc, 0xfdd, 0xfde, 0xfdf, 0xfe0, 0xfe1,

0xfe2, 0xfe3, 0xaf9, 0xfe4, 0xfe5, 0xfe6, 0xfe7, 0xfe8,

0xfe9, 0xfea, 0xfeb, 0xfec, 0xde0, 0xfed, 0xfee, 0xfef,

0xff0, 0xff1, 0xff2, 0xff3, 0xff4, 0xff5, 0xec3, 0xff6,

0xff7, 0xff8, 0xff9, 0xffa, 0xffb, 0xffc, 0xffd, 0xffe,

0x100, 0x9fa, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff,

0xfd0, 0xfd1, 0xfd2, 0xfd3, 0xfd4, 0xfd5, 0xfd6, 0xfd7,

0x100, 0x202, 0x203, 0x204, 0x205, 0x206, 0x30e, 0x41e,

0x53e, 0x67e, 0x7fe, 0x8fe, 0xfff, 0xfff, 0xfff, 0xfff,

0x100, 0x101, 0x102, 0x206, 0x30e, 0x41e, 0x53e, 0x67e,

0x7fe, 0x8fe, 0x9fe, 0xafe, 0xfff, 0xfff, 0xfff, 0xfff

};

int JfifApp0Marker(char *pbuf)

{

*pbuf++ = 0xFF;// APP0 marker

*pbuf++ = 0xE0;

*pbuf++ = 0x00;// length

*pbuf++ = 0x10;

*pbuf++ = 0x4A;// JFIF identifier

*pbuf++ = 0x46;

*pbuf++ = 0x49;

*pbuf++ = 0x46;

*pbuf++ = 0x00;

*pbuf++ = 0x01;// version

*pbuf++ = 0x02;

*pbuf++ = 0x00;// units

*pbuf++ = 0x00;// X density

*pbuf++ = 0x01;
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 140 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
*pbuf++ = 0x00;// Y density

*pbuf++ = 0x01;

*pbuf++ = 0x00;// X thumbnail

*pbuf++ = 0x00;// Y thumbnail

return 18;

}

int FrameHeaderMarker(char *pbuf, int width, int height, int format)

{

int length;

if (format == FORMAT_MONOCHROME)

length = 11;

else

length = 17;

*pbuf++ = 0xFF;// start of frame: baseline DCT

*pbuf++ = 0xC0;

*pbuf++ = length>>8;// length field

*pbuf++ = length&0xFF;

*pbuf++ = 0x08;// sample precision

*pbuf++ = height>>8;// number of lines

*pbuf++ = height&0xFF;

*pbuf++ = width>>8;// number of samples per line

*pbuf++ = width&0xFF;

if (format == FORMAT_MONOCHROME)// monochrome

{

*pbuf++ = 0x01;// number of image components in frame

*pbuf++ = 0x00;// component identifier: Y

*pbuf++ = 0x11;// horizontal | vertical sampling factor: Y

*pbuf++ = 0x00;// quantization table selector: Y

}

else if (format == FORMAT_YCBCR422) // YCbCr422

{

*pbuf++ = 0x03;// number of image components in frame

*pbuf++ = 0x00;// component identifier: Y

*pbuf++ = 0x21;// horizontal | vertical sampling factor: Y

*pbuf++ = 0x00;// quantization table selector: Y

*pbuf++ = 0x01;// component identifier: Cb

*pbuf++ = 0x11;// horizontal | vertical sampling factor: Cb

*pbuf++ = 0x01;// quantization table selector: Cb

*pbuf++ = 0x02;// component identifier: Cr

*pbuf++ = 0x11;// horizontal | vertical sampling factor: Cr

*pbuf++ = 0x01;// quantization table selector: Cr

}

else// YCbCr420

{

*pbuf++ = 0x03;// number of image components in frame

*pbuf++ = 0x00;// component identifier: Y

*pbuf++ = 0x22;// horizontal | vertical sampling factor: Y

*pbuf++ = 0x00;// quantization table selector: Y
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 141 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
*pbuf++ = 0x01;// component identifier: Cb

*pbuf++ = 0x11;// horizontal | vertical sampling factor: Cb

*pbuf++ = 0x01;// quantization table selector: Cb

*pbuf++ = 0x02;// component identifier: Cr

*pbuf++ = 0x11;// horizontal | vertical sampling factor: Cr

*pbuf++ = 0x01;// quantization table selector: Cr

}

return (length+2);

}

int ScanHeaderMarker(char *pbuf, int format)

{

int length;

if (format == FORMAT_MONOCHROME)

length = 8;

else

length = 12;

*pbuf++ = 0xFF;// start of scan

*pbuf++ = 0xDA;

*pbuf++ = length>>8;// length field

*pbuf++ = length&0xFF;

if (format == FORMAT_MONOCHROME)// monochrome

{

*pbuf++ = 0x01;// number of image components in scan

*pbuf++ = 0x00;// scan component selector: Y

*pbuf++ = 0x00;// DC | AC huffman table selector: Y

}

else// YCbCr

{

*pbuf++ = 0x03;// number of image components in scan

*pbuf++ = 0x00;// scan component selector: Y

*pbuf++ = 0x00;// DC | AC huffman table selector: Y

*pbuf++ = 0x01;// scan component selector: Cb

*pbuf++ = 0x11;// DC | AC huffman table selector: Cb

*pbuf++ = 0x02;// scan component selector: Cr

*pbuf++ = 0x11;// DC | AC huffman table selector: Cr

}

*pbuf++ = 0x00;// Ss: start of predictor selector

*pbuf++ = 0x3F;// Se: end of spectral selector

*pbuf++ = 0x00;// Ah | Al: successive approximation bit position

return (length+2);

}

int DefineQuantizationTableMarker(char *pbuf, int qscale, int format)

{

int i, q, length;

if (format == FORMAT_MONOCHROME)// monochrome
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 142 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
length = 67;

else

length = 132;

*pbuf++ = 0xFF;// define quantization table marker

*pbuf++ = 0xDB;

*pbuf++ = length>>8;// length field

*pbuf++ = length&0xFF;

*pbuf++ = 0;// quantization table precision | identifier

for (i = 0; i < 64; i++)

{

q = (JPEG_StdQuantTblY_ZZ[i] * qscale + 16) >> 5;

*pbuf++ = q;// quantization table element

}

if (format != FORMAT_MONOCHROME)

{

*pbuf++ = 1;// quantization table precision | identifier

for (i = 0; i < 64; i++)

{

q = (JPEG_StdQuantTblC_ZZ[i] * qscale + 16) >> 5;

*pbuf++ = q;// quantization table element

}

}

return (length+2);

}

int DefineHuffmanTableMarkerDC(char *pbuf, unsigned int *htable, int class_id)

{

int i, l, count;

char *plength;

int length;

*pbuf++ = 0xFF;// define huffman table marker

*pbuf++ = 0xC4;

plength = pbuf;// place holder for length field

*pbuf++;

*pbuf++;

*pbuf++ = class_id;// huffman table class | identifier

for (l = 0; l < 16; l++)

{

count = 0;

for (i = 0; i < 12; i++)

{

if ((htable[i] >> 8) == l)

count++;

}

*pbuf++ = count;// number of huffman codes of length l+1

}

length = 19;

for (l = 0; l < 16; l++)
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 143 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
{

for (i = 0; i < 12; i++)

{

if ((htable[i] >> 8) == l)

{

*pbuf++ = i;// HUFFVAL with huffman codes of length l+1

length++;

}

}

}

*plength++ = length>>8;// length field

*plength = length&0xFF;

return (length + 2);

}

int DefineHuffmanTableMarkerAC(char *pbuf, unsigned int *htable, int class_id)

{

int i, l, a, b, count;

char *plength;

int length;

int eob = 1;

int zrl = 1;

*pbuf++ = 0xFF;// define huffman table marker

*pbuf++ = 0xC4;

plength = pbuf;// place holder for length field

*pbuf++;

*pbuf++;

*pbuf++ = class_id;// huffman table class | identifier

for (l = 0; l < 16; l++)

{

count = 0;

for (i = 0; i < 162; i++)

{

if ((htable[i] >> 8) == l)

count++;

}

*pbuf++ = count;// number of huffman codes of length l+1

}

length = 19;

for (l = 0; l < 16; l++)

{

// check EOB: 0|0

if ((htable[160] >> 8) == l)

{

*pbuf++ = 0;// HUFFVAL with huffman codes of length l+1

length++;

}

// check HUFFVAL: 0|1 to E|A

for (i = 0; i < 150; i++)

{

if ((htable[i] >> 8) == l)
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 144 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
{

a = i/10;

b = i%10;

*pbuf++ = (a<<4)|(b+1);// HUFFVAL with huffman codes of length l+1

length++;

}

}

// check ZRL: F|0

if ((htable[161] >> 8) == l)

{

*pbuf++ = 0xF0;// HUFFVAL with huffman codes of length l+1

length++;

}

// check HUFFVAL: F|1 to F|A

for (i = 150; i < 160; i++)

{

if ((htable[i] >> 8) == l)

{

a = i/10;

b = i%10;

*pbuf++ = (a<<4)|(b+1);// HUFFVAL with huffman codes of length l+1

length++;

}

}

}

*plength++ = length>>8;// length field

*plength = length&0xFF;

return (length + 2);

}

int DefineRestartIntervalMarker(char *pbuf, int ri)

{

*pbuf++ = 0xFF;// define restart interval marker

*pbuf++ = 0xDD;

*pbuf++ = 0x00;// length

*pbuf++ = 0x04;

*pbuf++ = ri >> 8;// restart interval

*pbuf++ = ri & 0xFF;

return 6;

}

/*

Purpose: Create JPEG header in JFIF format

Parameters:header - pointer to JPEG header buffer

width - image width

height - image height

format - color format (0 = YCbCr422, 1 = YCbCr420, 2 = monochrome)

restart_int - restart marker interval

qscale - quantization table scaling factor

Return: length of JPEG header (bytes)

*/
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 145 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
int CreateJpegHeader(char *header, int width, int height, int format, int
restart_int, int qscale)

{

char *pbuf = header;

int length;

// SOI

*pbuf++ = 0xFF;

*pbuf++ = 0xD8;

length = 2;

// JFIF APP0

length += JfifApp0Marker(pbuf);

// Quantization Tables

pbuf = header + length;

length += DefineQuantizationTableMarker(pbuf, qscale, format);

// Frame Header

pbuf = header + length;

length += FrameHeaderMarker(pbuf, width, height, format);

// Huffman Table DC 0 for Luma

pbuf = header + length;

length += DefineHuffmanTableMarkerDC(pbuf, &JPEG_StdHuffmanTbl[352], 0x00);

// Huffman Table AC 0 for Luma

pbuf = header + length;

length += DefineHuffmanTableMarkerAC(pbuf, &JPEG_StdHuffmanTbl[0], 0x10);

if (format != FORMAT_MONOCHROME)// YCbCr

{

// Huffman Table DC 1 for Chroma

pbuf = header + length;

length += DefineHuffmanTableMarkerDC(pbuf, &JPEG_StdHuffmanTbl[368], 0x01);

// Huffman Table AC 1 for Chroma

pbuf = header + length;

length += DefineHuffmanTableMarkerAC(pbuf, &JPEG_StdHuffmanTbl[176], 0x11);

}

// Restart Interval

if (restart_int > 0)

{

pbuf = header + length;

length += DefineRestartIntervalMarker(pbuf, restart_int);

}

// Scan Header

pbuf = header + length;

length += ScanHeaderMarker(pbuf, format);

return length;
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 146 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality

Micron Confidential and Proprietary Advance
}

JPEG Power Saving
Turning off JPEG clock Reg 11:1[4] during preview mode will reduce about 25 percent of
current draw from VDD (50mA -> 38mA) and power on VDD is about 50 percent of the
total power consumption for the MT9D111. Manually change this bit between preview/
capture context switches. Turn on the clock just before DO_CAPTURE, then turn off the
clock once the sequencer state is back to Preview or PreviewEnter.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 147 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality FAQs

Micron Confidential and Proprietary Advance
JPEG Functionality FAQs
• Do I have to capture JPEGs in 422 Mode for a full-resolution image?
• MT9D111 spec does not provide information about the status byte that is at the end

of each LINE_VALID stream in SPOOF mode. Please provide a description of the field.
• From MT9D111 Spec: “The timing of PIXCLK and Dout within each LINE_VALID

assertion period is variable and therefore unlike that of uncompressed data”. Why is
the timing different? Spoof mode is supposed to emulate the uncompressed data,
which will require no changes on PIXCLK or Dout behavior, right? I was expecting
that filler bytes will be placed after JPEG bytes.

• What are the specific recommendations that map the most popular SNAPSHOT reso-
lutions with a preferred programming for the Spoof Frame Width and Spoof Frame
Height (IFP Register's Page2 Reg 0x10 and 0x11)? Does Micron recommend a FIXED
Spoof Frame Width/Height regardless of resolution?

• Does the JPEG data length include the 4 bytes used for J0, J1, J2, and status bytes at the
end of each LINE_VALID sync?

• Does the JPEG compression algorithm support compressed 565 output?
• How does the use of the JPEG engine affect the frame rate? Use of JPEG should reduce

the amount of data transmitted, but does it affect the frame rate?

Do I have to capture JPEGs in 422 Mode for a full-resolution image? Yes, for full-reso-
lution JPEG, you will need 4:2:2 format rather than 4:2:0. For full resolution in JPEG, you
can capture in 4:2:2 and monochrome format.

MT9D111 spec does not provide information about the status byte that is at the end of
each LINE_VALID stream in SPOOF mode. Please provide a description of the field.
In spoof mode, the JPEG status byte is always appended to the end of the JPEG data
stream. In continuous mode, the appending of the JPEG status byte can be optionally
enabled by setting mode.FIFO_config0_B[9]=1. The status byte is the value of R2:2[7:0].

From MT9D111 Spec: “The timing of PIXCLK and DOUT within each LINE_VALID
assertion period is variable and therefore unlike that of uncompressed data”. Why is
the timing different? Spoof mode is supposed to emulate the uncompressed data,
which will require no changes on PIXCLK or DOUT behavior, right? I was expecting that
filler bytes will be placed after JPEG bytes. Spoof mode is used such that the
LINE_VALID (which in this case is DATA_VALID) are in regular periods, instead of being
non-uniform and dependent on when the compressed data is available. The timing of
PIXCLK and DOUT are based on when the valid data is available.

What are the specific recommendations that map the most popular SNAPSHOT reso-
lutions with a preferred programming for the Spoof Frame Width and Spoof Frame
Height (IFP Register's Page2 Reg 0x10 and 0x11)? Does Micron recommend a FIXED
Spoof Frame Width/Height regardless of resolution? Spoof frame width and height
should be set according to the expected JPEG frame size. We recommend enabling
ignore spoof frame height to avoid spoof frame error when the spoof frame size is set too
small, and to avoid excessive padding of dummy data when the spoof frame size is set
too large. Spoof frame width should be much larger than the horizontal blanking—spoof
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 148 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
JPEG Functionality FAQs

Micron Confidential and Proprietary Advance
LINE_VALID lead plus spoof LINE_VALID trail—to prevent FIFO overflow. The user
should set the desired spoof frame width and height to mode.spoof_width_B and
mode.spoof_height_B.

Does the JPEG data length include the 4 bytes used for J0, J1, J2, and status bytes at the
end of each LINE_VALID sync? The JPEG data length does not include J0, J1, or J2. Sta-
tus bytes are appended only at the end of the last LINE_VALID of the JPEG spoof frame,
not every LINE_VALID.

Does the JPEG compression algorithm support compressed 565 output? No. We can
only output RGB565 format in uncompressed mode.

How does the use of the JPEG engine affect the frame rate? Use of JPEG should reduce
the amount of data transmitted, but does it affect the frame rate? No, the use of JPEG
engine would not affect the frame rate. The limiting factor for frame rate is the AE algo-
rithm and image size, blanking, system clock, etc. Regardless of the compression ratio,
AE needs to collect enough luminance information from the image and change expo-
sure time and gain to achieve the new target luminance, and therefore limit the frame
rate.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 149 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Appendix A—How to Update Demo2 Firmware

Micron Confidential and Proprietary Advance
Appendix A—How to Update Demo2 Firmware
To run the MT9D111, the firmware in the demo2 board to B3_7.1C must be updated.

1. Install the new DevWare 2.6 Beta x
2. Go to C:\Program File\Micron Imaging\
3. Run HardwareUpdate.exe
4. Select “Check for FPGA update”
5. Select “Pick customer xvf file” ~\fpga\

Program: 100700b3.xvf (without v)
Verify: v100700b3.xvf (starts with v)

6. Wait until FPGA update is complete, then click “Finish”
7. Run HardwareUpdate.exe again
8. Check for firmware update
9. Pick customer xvf file ~\firmware\1007001C.bin

10. Wait until the firmware update is complete, then click “Finish”
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 150 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Appendix B—Miscellaneous FAQs

Micron Confidential and Proprietary Advance
Appendix B—Miscellaneous FAQs
• Fixed Pattern Noise (FPN) appears in Preview mode in low light conditions when 2

ADC are used in Context A. How do we reduce the FPN?
• When should REFRESH be used? When not? What does REFRESH do? When does

REFRESH start to affect the system, after how many frames, etc.? What is the differ-
ence between REFRESH and REFRESH_MODE?

• When can the registers be written? When not?
• Is there a need for a delay after the REFRESH command?
• Does the MT9D111 contain flash memory? Can the user access the MCU on the chip

for general computing?
• What is the chief ray angle requirement for the 2 MP MT9D111?
• What does “PRNU” stand for?
• What is TCLKIN? Is this the period of master clock?
• Is it possible to have an ISO setting in the MT9D111?
• How do I change the PLL setting after the firmware is running?
• Why does random noise appear in low light conditions?
• How do you adjust several functions (AE target, AWB parameter) after power-on and

initialization? I think that it is not possible to set the parameter while the firmware is
running...

• Why does random noise appear in low light conditions?
• Do I have to wait after a REFRESH command?
• Can VDDPLL be left unconnected if PLL is not used (by default, we knew the PLL is

bypassed and powered down)?
• Can VDDGPIO be left unconnected if GPIO pins all are not used?
• Are the registers REG0x61:0, REG0x62:0, REG0x63:0, and REG0x64:0 related to a row

noise? When row noise occurs, these register values seem to change a lot.
• According to the specifications sheet, I have to issue the REFRESH command

(seq.cmd = 5) when changing the image resolution, effect, gamma and so on. In this
timing, it seems that hardware registers were changed by drivers. See the following
example for an explanation:

• How should we treat the STANDBY terminal? Should it be connected to GND or
open?

Fixed Pattern Noise (FPN) appears in Preview mode in low light conditions when 2
ADC are used in Context A. How do we reduce the FPN? The AE settings show that it
was in the highest zone number, which means that all the gains are at maximum values
due to the dark lighting conditions. In such a scenario (almost complete darkness), we
do expect some column FPN. However, the column FPN can be reduced by:

• Limiting all the maximum gain settings in the AE driver (ID=2)
• Use 1 ADC. Since the frame rate will be reduced in dark conditions, 1 ADC is enough

for the slower FPS.

When should REFRESH be used? When not? What does REFRESH do? When does
REFRESH start to affect the system, after how many frames, etc.? What is the differ-
ence between REFRESH and REFRESH_MODE? REFRESH and REFRESH_MODE both
upload image processing parameters (from drivers to IP hardware) for the current con-
text. However, only REFRESH_MODE uploads sensor size and timing parameters and
only REFRESH_MODE updates the drivers’ windows (IP statistics). REFRESH does not
upload the sensor size and timing parameters, but REFRESH does update/reset all of the
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 151 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Appendix B—Miscellaneous FAQs

Micron Confidential and Proprietary Advance
drivers’ operating values (for example, AE limits, Low-light parameters, etc.). For crop/
pan changes (like digital zoom), use REFRESH_MODE. These changes are applied at the
end of the current frame in which the REFRESH/REFRESH_MODE command is issued.

When can the registers be written? When not? Registers may be written any time the
MT9D111 is awake and running via the two-wire serial interface. However, to avoid mid-
frame changes in an image’s appearance, avoid changing Sensor Core registers (page 0)
or SOC registers (page 1, 2) during the FRAME_VALID time (these may be changed at
any time if appearance is not a factor, for example, upon startup). Most changes to
image parameters may be written to the driver variables at any time. Driver variables are
internally programmed to update the IP hardware at the correct time between frames.

Is there a need for a delay after the REFRESH command? REFRESH should only be
issued once per frame. REFRESH_MODE may be issued as often as possible.

Does the MT9D111 contain flash memory? Can the user access the MCU on the chip
for general computing? This part does not contain flash memory. Also, we have not
attempted to use the MT9D111 to drive an external flash part. The MCU contained in the
MT9D111 is not designed to be used for general computing.

What is the chief ray angle requirement for the 2 MP MT9D111? The chief ray angle
(CRA) requirement for the 2MP MT9D111 is captured in Figure 57.

Figure 57: Chief Ray Angle Requirement for 2MP MT9D111

What does “PRNU” stand for? PRNU stands for “pixel response non-linearity.”

What is TCLKIN? Is this the period of master clock? TCLKIN is the period of master
clock cycle (if PLL is not used) or PLL cycle (if PLL is enabled).

Is it possible to have an ISO setting in the MT9D111? The MT9D111 does not have reg-
isters that map directly to an ISO-equivalent setting. Since our sensors employ an elec-
tronic rolling shutter (ERS), the meaning and application of ISO is different (and less
beneficial) than it is for a traditional camera with mechanical shutters. ISO is essentially

MT9D111 CRA

0

5

10

15

20

25

0 20 40 60 80 100 120
Image Height (%)

C
R

A
 (d

eg
)

PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 152 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Appendix B—Miscellaneous FAQs

Micron Confidential and Proprietary Advance
a control of sensitivity to light. For the MT9D111, it means to have different exposure
time and gains. Our parts have automatic gain control (hence auto ISO speed). In order
to have fixed sensitivity, you would have to either:

1. Turn off the firmware drivers (AE, AWB, etc.) to manually control gain and exposure
time. However, this might lead to incorrect exposure and flicker detection.

2. Fix the max/min gains and max/min indexes (“zones”) settings in the AE driver. By
locking the camera into a certain zone and gains, you will have fixed frame rate and
gains.

Again, the MT9D111 does not provide direct ISO settings. You may control the gain/
exposure time to control the sensitively (to simulate ISO settings), but doing so is not
likely to work as well as the auto mode.

How do I change the PLL setting after the firmware is running? You may change the
PLL settings (M/N/P) during operation by bypassing the PLL first. For example:

REG=0, 0x65, 0xA000 // bypass PLL

...change PLL settings here...

REG=0, 0x65, 0x2000 // disable PLL bypass

How do you adjust several functions (AE target, AWB parameter) after power-on and
initialization? I think that it is not possible to set the parameter while the firmware is
running.

We are considering the following sequence:

1. Preview mode set
2. Firmware stop
3. Parameter setting (ex. AE target...)
4. REFRESH command (#Invoke Sequencer Refresh[B103 0005])

Firmware parameters (AE, AWB, etc.) may be adjusted after initialization. You should
note that some firmware variables are updated immediately, while others require a
REFRESH/REFRESH_MODE command after the change in values. For example, if
ae.target (ID=2, Offset=6) is changed from the default value of 60 to 10, the image
brightness changes suddenly (the image becomes very dark).

Why does random noise appear in low light conditions? At under 5 lux, we do expect
some noise in the image. However, there are several ways to improve the image quality
in low-light conditions, including the “night mode” preset below:

[Increased Gain/Lower Saturation (Night Mode)]

VAR8=2, 0x10, 0x0080 // AE_MAX_VIRTGAIN

VAR8=2, 0x18, 0x0080 // AE_MAXGAIN23

VAR8=2, 0x0E, 0x0018 // AE_MAX_INDEX

VAR8=2, 0x16, 0x0060 // AE_MAX_DGAIN_AE2

VAR8=7, 0x43, 0x0042 // MODE_GAM_CONT_A

VAR8=7, 0x44, 0x0042 // MODE_GAM_CONT_B

VAR8=1, 0x18, 0x0040 // SEQ_LLSAT1

VAR8=1, 0x03, 0x0005 // SEQ_CMD

If the above settings do not provide improvement, you can also configure the low-light
(“LL”) variables in the sequencer driver. For example, you may use:

• seq.sharedParams.LLmode (ID=1, Offset=21)
• Bit 0-change interpolation threshold
• Bit 1-reduce color saturation
• Bit 2-reduce aperture correction
• Bit 3-increase aperture correction threshold
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 153 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Appendix B—Miscellaneous FAQs

Micron Confidential and Proprietary Advance
• Bit 4-enable Y filter
For details related to low-light variables, refer to the “Driver Variable-Sequencer Driver
(ID=1)” table in the MT9D111 data sheet.

The above settings are only an example and can be tuned to your needs. The maximum
gain was increased for low-light conditions, which will introduce more noise. For exper-
imental purposes, you can reduce the maximum allowed gain by the following variables
in the AE driver (ID=2):

• ae.maxVirtGain (offset=16) –maximum allowed virtual gain
• ae.maxDGainAE1 (offset=20) –maximum digital gain pre-LC (lens correction)
• ae.maxDGainAE2 (offset=22) –maximum digital gain post-LC (lens correction)
• ae.mazGain23 (offset=24) –maximum gain to increase in low-light before dropping

frame rate

Do I have to wait after a REFRESH command? Changes to the firmware variables
would be effective starting the next frame after the REFRESH command is called, except
for a few cases related to changes to integration time (which takes two frames instead of
one). Hence there is no significant delay. If you are using DevWare, you will notice
longer delays, but these delays ares due to the software, not the chip itself.

Can VDDPLL be left unconnected if PLL is not used (by default, we knew the PLL is
bypassed and powered down)? For ESD reasons, we do not recommend leaving
VDDPLL floating even if they are not used. If they are not used, they will not consume
much power.

Can VDDGPIO be left unconnected if GPIO pins all are not used? For ESD reasons, we
do not recommend leaving VDDGPIO floating even if they are not used. Unused
VDDGPIO won't consume much power.

Are the registers REG0x61:0, REG0x62:0, REG0x63:0, and REG0x64:0 related to a row
noise? When row noise occurs, these register values seem to change a lot. An offset
can be provided to the ADC for green1, blue, red, and green2 (determined by 0x61-64:0).
When 0x60:0[0]=0 (default), the values in R0x61-64:0 are read-only; they show the offset
values determined by the black-level calibration algorithm. The purpose of this is to fully
utilize the ADC input dynamic range.

According to the specifications sheet, I have to issue the REFRESH command (seq.cmd
= 5) when changing the image resolution, effect, gamma and so on. In this timing, it
seems that hardware registers were changed by drivers. See the following example for
an explanation:

First, I changed the slew rate control register in R14:2 and R15:2 (hardware registers),
but in this timing, I do not change the slew rate control variables in the mode
driver(ID=7). Next, I issued the REFRESH command to change the image resolution.
After issuing the command, the hardware registers were changed by the drivers.

I think that there are many registers like this. I would like to know which registers were
changed by drivers when I issued the seq.cmd =5. I cannot understand how to set the
register correctly without this information. The REFRESH command (seq.cmd=5) is
only needed when variable (not register) settings are changed. As you have noted, some
variables are mapped to registers, so the variable value overwrites the associated regis-
ter. Since the MT9D111 has many features and registers, the firmware is designed such
that the user can make programming easier (because the firmware calculates and pro-
grams multiple registers automatically).
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 154 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Appendix B—Miscellaneous FAQs

Micron Confidential and Proprietary Advance
Therefore, we recommend programming via variables instead of registers whenever
possible. For example, slew rate values should be programmed from the firmware
(mode driver) instead of the SOC page2 register. Most frequently used settings related to
the color pipeline can be configured using firmware variables.

How should we treat the STANDBY terminal? Should it be connected to GND or open?
STANDBY should not be left open. If it is not used, it should be tied to ground.
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 155 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Appendix C—Glossary of Terms

Micron Confidential and Proprietary Advance
Appendix C—Glossary of Terms

Table 23: Glossary of Terms

Term Definition

ADC Analog-to-digital converter
APS Active-pixel sensor. The CMOS active-pixel sensor is a second-generation solid

state sensor technology that was invented and developed at JPL. CMOS APS
technology utilizes active transistors in each pixel to buffer the photo signal. The
performance of this technology is comparable to charge-coupled devices (CCDs).
Because CMOS APS is inherently CMOS-compatible, it is easy to integrate on-chip
timing, control, and drive electronics, reducing system cost and complexity.

AWB Auto white balance
Bayer color filter array Color space jointly developed by Microsoft and Hewlett Packard as a color

standard. Refer to http://www.w3.org/Graphics/Color/sRGB.
Bi Level An image with only two colors
Bitmap An image containing only raster information
BMP A bitmap format
CCD Charge-coupled device—one of the two main types of image sensors used in

digital cameras
CCM Color correction module or color correction matrix
Chrominance Comprises the two components of a television signal that encode color

information. Chrominance defines the difference between a color and a chosen
reference color of the same luminous intensity.

CMOS Complementary metal-oxide semiconductor
CMYK Cyan, magenta, yellow and black. A color printing system that uses these colors.

See RBG.
Dithering A method of displaying colors that are not available on a printer, monitor, etc., by

mixing available colors.
DRAM Dynamic RAM
ERS Electronic rolling shutter
FIFO First in first out
fps Frames per second
Gamma Different platforms such as PC, Mac, and UNIX interpret color values slightly

differently. Any images that look dark on a PC might look bright on a Mac.
The gamma correction is a way to explain how an image should be displayed.

Gamma characteristic A gamma characteristic is a power-law relationship that approximates the
relationship between the encoded luminance in a television system and the actual
desired image brightness. With this nonlinear relationship, equal steps in encoded
luminance correspond to subjectively approximately equal steps in brightness.

GIF Graphics interchange format
Halftone A gray-scale image represented by bi-level information
IFP Image flow processor—performs color recovery and correction, sharpening,

gamma correction, lens shading correction, and on-the-fly defect correction
Interlaced Graphic data is split (usually into two parts), and displayed alternately line by line.
Interlacing Also known as progressive display—GIF, JPG and TIFF have supported this feature

since the early 1990s.
JPG Joint photographic experts group—a file format.
LC Lens shading correction
LED Light emitting diode
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 156 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Appendix C—Glossary of Terms

Micron Confidential and Proprietary Advance
LSB Least significant bit
Luma Intensity or brightness component of pixel information
Luminance The quality of being luminous—emitting or reflecting light. Luminosity is

measured relative to that of our sun.
MSB Most significant bit.
MTF Modulation transfer function—the sharpness of a photographic imaging system

or of a component of the system (lens, film, scanner, enlarging lens, etc.) is
characterized by MTF.

NTSC National Television Standards Committee—the North American standard (525-line
interlaced raster-scanned video) for the generation, transmission, and reception
of television signals.

Output Resolutions Includes, but is not limited to, VGA, QVGA, CIF, and QCIF.
PAL Phase Alternating Line, Phase Alternation by Line or Phase Alternation Line—

mainly a European standard of displaying analog television signals. It consists of
625 horizontal lines of resolution at 50Hz. Also see NTSC.

Palette A set of colors that can be used for a spec output device.
Pixels A short name for picture element. The smallest part that can be displayed on a

monitor.
PPS Passive-pixel sensors (1960s).
Progressive Scan An image sensor that gathers its data and processes each scan line one after

another in sequence. Compare to Interlaced.
Resolution A measure on how much information is stored in an image.
RGB Red, green and blue. A way to represent color on a monitor. Also see CMYK.
RST Reset
SADDR Sensor address
SCLK Serial clock
SOC System-on-a-chip
SRAM Static random access memory. SRAM is a type of memory that is faster and more

reliable than the more common DRAM (dynamic RAM). The term static is derived
from the fact that it does not need to be refreshed like dynamic RAM. Due to its
expense, SRAM is often used only as a memory cache.

TIFF Tagged image file format
True Color 24-bit color. 16,777,216 colors.
TWAIN A software use to control the communication between scanners and image

processing software.
VREF Voltage reference

Table 23: Glossary of Terms (continued)

Term Definition
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 157 ©2005 Micron Technology, Inc. All rights reserved.

 MT9D111 Developer Guide
Revision History

Micron Confidential and Proprietary Advance
Revision History

Rev A, Advance, Draft 6/05
PDF:09005aef81af1a84/Source:09005aef81af1a60 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111_Dev_Guide_3.fm - Rev. A 6/05 EN 158 ©2005 Micron Technology, Inc. All rights reserved.

	MT9D111 Developer Guide
	About this Guide
	Table of Contents
	List of Figures
	List of Tables
	Introduction to Registers
	Two-Wire Serial Interface
	Overview
	Example: 16 Bit Register Read
	Example: 16 Bit Register Write
	Accessing the Firmware Drivers' Variables

	Initializing the MT9D111
	Power-up Sequence
	Hard Reset Sequence
	Soft Reset Sequence
	Standby Sequence
	PLL Setup
	Identifying Chip Version

	Initializing FAQs
	Context Switching and Output Configuration
	Context Switch and Setup
	Changing the Output Resolution
	Selecting Output Data Formats
	Raw Bayer Data Output
	Output Format and Timing
	Decimation, Zoom, and Pan
	Enabling Special Effects
	Mirroring the Image
	Column and Row Skip
	Binning
	Configuring Pad Slew
	Capturing Still Pictures
	Capturing Videos
	Enabling and Capturing JPEG
	Switching Between JPEG 4:2:2, 4:2:0, and Monochrome

	Context Switching and Output Configuration FAQs
	Gamma and Contrast
	Gamma
	Contrast

	Gamma and Contrast FAQs
	Lens Shading and Correction
	Introduction
	Lens Shading Approach
	Setup
	Preset and Load
	Setup Conditions
	Calibration
	Result
	Verification
	Related Register List

	Lens Shading and Correction FAQs
	Auto Exposure
	Overview
	Preview Mode
	Scene Evaluative Mode
	AE Sport Mode
	How to Calibrate the AE Exposure Value (EV) Reference
	How to Modify the Image Brightness
	How to Speed Up and Slow Down AE Adjustments
	How to Maintain Specific Frame Rates
	How to Use Manual Exposure and Manual Gain

	Auto Exposure FAQs
	Flicker Avoidance
	Background
	How to Use the Flicker Detection Driver

	Flicker Avoidance FAQs
	Color Correction
	Auto White Balance
	How to Change the Color Saturation
	How to Speed Up/Slow Down AWB
	How to use a Static CCM
	How to Perform Color Calibration
	Related Register List

	Color Correction FAQs
	Auto Focus Driver
	Background
	Scan Auto Focus Algorithm
	Evaluation of Image Sharpness
	Algorithm Flowchart
	Creep Compensation
	Public Variables of AF Driver
	Public Functions of AF Driver and Corresponding VMT Pointers
	Lens Actuator Control
	Managing Lens Actuator Hysteresis
	Timer
	Serial Interface
	Initial Positioning of Stepper Motors

	Auto Focus Driver FAQs
	Auto Focus Mechanism
	Introduction
	Public Functions of the AFM Driver and Corresponding VMT Pointers

	Mode Driver-Setting up Preview (A) and Capture (B) Modes
	MT9D111 Register Wizard
	Procedure

	MT9D111 Developer Guide Mode Driver Preview and Driver FAQs
	Histogram Driver
	How to Set Up the Histogram Driver Variable for Operation

	Flash Strobe, Mechanical Shutter, and Global Reset
	Still Capture using Xenon/LED Flash with User-defined Image Quality Settings
	Still Capture using LED Flash with Automatic White Balance and Exposure Control

	Flash Strobe, Mechanical Shutter, and Global Reset FAQs
	GPIOs
	Programming GPIO Outputs
	Reading GPIO Inputs
	Outputting Flash and/or Strobe from GPIO
	Waveform Generator Programming Example

	GPIO FAQs
	Using the Test Patterns
	Disabling All Firmware Drivers

	JPEG Functionality
	How to Enable/Disable the JPEG Output
	How to Set the JPEG Color Format
	How to Set the Restart Marker Interval
	How to Get the JPEG Status
	How to Get the JPEG Data Length
	How to Handle the JPEG Errors
	How to Read/Write the JPEG Quantization/Huffman Table Memories
	How to Program the Quantization Table
	How to Translate between Qscale and Quality Factor
	How to Program the Customized Huffman Table
	How to Append the JPEG Header
	Sample C Code
	JPEG Power Saving

	JPEG Functionality FAQs
	Appendix A-How to Update Demo2 Firmware
	Appendix B-Miscellaneous FAQs
	Appendix C-Glossary of Terms
	Revision History
	Rev A, Advance, Draft 6/05

